

HIGH ENGERGY PULSE STACK HEC-DPSSL

Thilo Vethake, Head of Mechanical Design Cranbury, 3/21/2014

At a glance

Company figures

	Fiscal Year 2012/13	Change in %
Sales (in mil. €)	2,343.4	+ 0.7
Income before taxes (in mil. €)	154.1	- 26.9
Investments (in mil. €)	136.1	- 10.8
Expenditure for research and development (in mil. €)	211.0	+ 9.1
Employees (as of 06/30/2013)	9,925	+ 3.9

3

Our business divisions

World market and technology leader in production technology

Our business divisions

Share of sales

Medical technology

TRUMPF Photonics Inc., Cranbury, New Jersey

- Management: Dr. Treusch
- Employees: 143 (June 30th 2013)
- Sales:

\$ 75 Mio. (FY 12/13)

Products: Laser Diodes / Laser Diode based
 Componente Onticel Componente

Components, Optical Components, Solid State RF Generators

Development of Sales Revenue – TUSP total

Sales in \$k

Laser diodes and Pump modules: Process flow

Module Assembly – 9-12 kW Pump Source

- Start of development in November 2012
- Goal: 400W/bar, later 500W/bar
- 25 bar stack 10kW, later 12.5 kW
- 26 1mm submounts, later 50 0.5mm submounts
- AuSn (hard solder) for the entire stack
- active water cooled, expansion matched cooler

10

Modeling of design

- thermal spike during single pulse
- thermal behavior during continuous pulsed operation (average and peak)

Trumpf laser bar results on standard cooler

Trumpf laser bar used in standard product

(Pump source for disk laser)

- mounting process of 1st interface done on
- production equipment
- Laser on submount mounted on cooler
- This represents the chip performance under

ideal cooling conditions

Trumpf laser bar results on standard cooler

• the test results showed that with the appropriate cooling the diode material was able to perform at the operation point.

Experimental stack results

- The experimental stack showed the feasibility of the stacking technology
- Thermal rolling effects are to expect due to poor cooling or "air cooling"

Trumpf laser bar results on standard cooler

- wavelength data is shown on a Pump source cooler
- widening of spectrum visible due to higher duty cycle
- ~4.5 nm spectral width for 67 samples, shows repeatability

Introduction of stack design

inlet outlet

- Stack consists of 25 laser bars @
 500W peak power each
- Stacked on an insulated cooler

- Seals to manifold via O-Rings
- Quasi porous structure allows for insensitivity against clogging and efficient cooling

Introduction of stack design

- Manifold becomes mounting base for accurate reference in lensing
- Manifold distributes cooling water to 3

stacks

 Modular concept allows_upgrading and downgrading to different power configurations

- Expansion matching of cooler to stack:
- The first builds resulted in horizontal cracks
- Some of the cracks only showed up after testing up to 500A
- Due to warmer front and colder back

- The solution was to go to a sandwich configuration
- The sandwiches allow for individual movements
- Gap allows for individual thermal expansion

- Sandwich build
 - 1st interface (AuSn) mounting is done on a automated bonding tool (Suess FC250)
 - sub µm placement accuracy of chip on cooler
 - 2nd submount is also mounted on automated bonding tool with AuSn solder

- The Sandwich test allows testing of the parts that will be used in the later stack
- Characterization of power and wavelength are done, near field and smile measurements are possible.
- This step allows us to reduce scrap and increase the yield for the stack build

TRUMPF

TUSP QCW pump

- Power reached was 114W working on qualification 125W
- The purple line shows a scaled curve where 4% of the power are added to compensate for a shorted bar
- The green curve is measured at 1.5% duty cycle and shows some thermal rolling.

The wavelength for 1% duty cycle at 550A is 938.8nm, 939.5nm were the goal. The difference can be adjusted with a bias current.

- For lower duty cycles the wavelength is shorter due to less heating, for higher duty cycles the wavelength increases
- 0.1% duty cycle shows mainly the heating of the individual pulse

 Top electro-optical efficiency can be achieved at 300A with 58% for 0.1% duty cycle

At the operation point at 550A and 1% duty cycle the EO efficiency is 50%

Thank you for your attention !

I am looking forward to your questions..