Analysis of Laser Damage Threshold and Morphology at the Surface of AR-coated Ceramic Yb:YAG

Mariastefania De Vido¹, Jonathan Phillips¹, Joachim Hein², Jörg Kroener², Jodie M Smith¹, Klaus Ertel¹, Paul Mason¹, Saumyabrata Banerjee¹, Oleg Cheklov¹, Tom Butcher¹, Stephanie Tomlinson¹, Andy Lintern¹, Justin Greehalgh¹, Waseem Shaikh¹, Steve Hawkes¹, Cristina Hernandez-Gomez¹, John Collier¹

¹ STFC Rutherford Appleton Laboratory, Didcot UK
² Friedrich-Schiller Universität Jena, Jena, Germany

Outline

- Why are we interested in LIDT testing of AR coated ceramic Yb:YAG?
- Description of samples
- Description of experimental setup and methodology
- Experimental results
- Conclusions

DiPOLE Gain Medium

AR-coated ceramic Yb:YAG gain medium

- Reasonable gain + lifetime
- Good thermo-mechanical properties
- Large sizes possible
- Compound structures for ASE suppression

Operation at cryo temperature

- Reduced reabsorption, higher o-o efficiency
- Increased gain cross section

Distributed face cooling

- ➤ He gas flow
- > Large depth/volume and high surface area

Optics Express, Vol. 19, p. 26610

Science & Technology Facilities Council Central Laser Facility

Laser Damage Observed in DiPOLE

- Recurring damage at ~2.5 J/cm²
- In high-pressure cold He flow
- Localised, not growing fast
- Only Yb:YAG affected, not windows

LIDT Testing

- Tests performed at Friedrich-Schiller-Universität Jena
- <u>1 on 1 LIDT test</u> following ISO11254-4

Objectives:

Assess influence of sample fabrication on LIDT

Polishing technique

Coating technique

Assess influence of environmental parameters on LIDT

Temperature

Atmosphere vs vacuum pressure

Science & Technology Facilities Council Central Laser Facility

Sample Fabrication Parameters

- 0.7% Yb doped ceramic YAG
- Dimensions: 24 mm x 24 mm x 7 mm
- AR coated by means of:
 - Ion Assisted Deposition
 - Ion Beam Sputtering

Sample	Polishing Technique	RMS roughness after polishing	Coating		
Sample 1	Normal	<0.2 nm	IAD		
Sample 2	Normal	<0.2 nm	IBS	Low roughness	
Sample 3	Super Polishing	0.1 nm	IAD	substrate	
Sample 4	Super Polishing	0.1 nm	IBS		
Sample 5	Ion Beam Polishing	<0.33 nm	IAD		
Sample 6	Ion Beam Polishing	<0.33 nm	IBS	ligherroughness	
Sample 7	Magneto-rheological Finishing	<0.46 nm	IAD	substrate	
Sample 8	Magneto-rheological Finishing	<0.46 nm	IBS	Science & Technology Facilities Council	
© copyright STFC					

Environmental Parameters

Four runs at different environmental conditions:

Run	Temperature (K)	Pressure (mbar)
А	300	1000
В	300	$1 * 10^{-6}$
С	150	$1 * 10^{-6}$
D	115	$1 * 10^{-6}$

For each run: 11 energy levels, 10 shots per energy level

Test Station

Damage diagnostics:

- CCD microscope: identification of damage. Sensitivity increased by scattering signal of green cw beam collinear to the main beam.
- Residual gas analyser: detection of particles blown away from the surface.
- Microscopic examination of testing sites after irradiation.

Laser Parameters

Wavelength	1030 nm
Pulse duration	3 ns
Energy per shot	Up to 100 mJ, controlled using a variable attenuator
Polarisation	Parallel
Focal spot size (1/e)	~250 µm

Data Analysis

• Environmental conditions (pressure and temperature)

Impact of substrate roughness on LIDT

HIGH ROUGHNESS

IBS

IBS

Impact of temperature on LIDT

Impact of pressure on LIDT

Impact of p on damage morphology

Damage topography

Normal polishing IAD coating 300K, 10⁻⁶ mbar

Conclusions

- No clear correlation between LIDT and temperature or pressure for both IAD and IBS coated samples and all polishing techniques
- Generally, IBS performs better on low roughness substrates
- Generally, IAD coating performs slightly better than IBS coating for higher roughness substrates
- Both temperature and pressure have an impact on laser induced damage morphology
- Coating technique has an impact on damage morphology, but polishing technique does not
- Disagreement between in-situ observation and off-line testing
- Advanced polishing techniques are no golden bullet

Science & Technology Facilities Council Central Laser Facility

Thank you!

