Front End Design for Temporally and Spatially Shaped 10 & 100 J Diode-Pumped Solid-State Laser

<u>Thomas Butcher</u>¹, Saumyabrata Banerjee¹, Paul Mason¹, Jan Pilar², Martin Divoky², Jodie Smith¹, Jonathan Phillips¹, Klaus Ertel¹, Oleg Chekhlov¹, Stephanie Tomlinson¹, Waseem Shaikh¹, Justin Greenhalgh¹, Ian Musgrave¹, Cristina Hernandez-Gomez¹, John Collier¹

¹ Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, UK
² HiLASE Project, Na Slovance 2, 18221 Prague, Czech Republic

Outline

- Motivation
- 10 J DiPOLE Front End Overview
 - Layout
 - Spatial shaping
 - Temporal shaping
 - 10 J Amplifier
 - Front End only
- 100 J DiPOLE Front End Overview
 - Requirements
 - Layout
 - Spatial shaping
 - Temporal shaping

Motivation

- Every laser starts somewhere
- Spatial shaping:
 - Uniform gain across beam
 - Don't want to saturate peak and whilst not having sufficient gain at wings
 - Target considerations
- Temporal shaping:
 - Pre-compensate for gain at leading edge of pulse
 - Target considerations
 - Uniform energy transfer
 - Compression
 - Step change in intensity

10 J Front End - Overview

- Fibre seed source IDIL
 - -0.5-7.5 nJ, 10 kHz
 - Includes temporal shaping
- 2. Regenerative amplifier HZDR
 - 1 mJ, 10 Hz
- 3. Multi-pass booster amplifier HZDR
 - 100 mJ, 10 Hz
- 4. Spatial Shaping
 - 20 mJ, 10 Hz

10 J Front End Layout

Fibre Seed

10 J Front End Layout

10 J Front End - Spatial shaping

- Utilise a serrated aperture followed by spatial filtering of the beam
- To produce a flat-top profile, need to expand the Gaussian input beam
- This results in high losses ~ 60 70 %

10 J Front End - Spatial shaping

- Super-Gaussian fit shows n ~ 8 or 9
- Plateau is not smooth
- Better way to do this?

Recent data taken from DiPOLE Front End

10 J Front End - Temporal shaping

Performed by IDIL Fibre Seed source

- AWG produces well defined voltage pulse shape
- Mach-Zehnder EOM selects pulse shape based on AWG input.

10 J Front End - Temporal shaping

- 20 mJ output energy
- 2 10 ns pulse duration
- 150 ps rise time
- No active control over pulse shape
 - pre-loaded waveforms
- 125 ps resolution on AWG
 - longer in practice

10 J Front End – FM-AM

Fibre output

Smooth temporal profile

Significant amplitude modulation

10 J Front End – FM-AM

- HZDR regenerative amplifier currently uses a plane-parallel thin disk
- Replace this with wedged gain medium to remove / reduce FM-AM

Results courtesy of Mathias Siebold, HZDR

100 J Front End Overview

100 J Front End - Requirements

- Variable centre wavelength: 1029.5 ± 0.3 nm (air)
- Variable pulse length: 2 ns 10 ns
- Arbitrary pulse shaping
 - Flat top
 - Ramp
 - Step function
- Spatial shaping square super-Gaussian
 - Smooth flat-top
 - Ability to mask damage spots (would like)
- Shaped alignment laser for 10 J amplifier
- 10 Hz repetition rate
- Output energy: 50 150 mJ @ 2-10 ns
- Fully automated control

100 J Front End - Differences

- Improved beam quality
- Active control of beam shape
- Active control of temporal shape
- Improved long term stability
- Increased pulse energy
- Automated control of system

100 J Front End – Spatial shaping

Passive Shaping system

Refractive beam shaping

Serrated aperture

Ratio 5:1 1000:200 um

Ratio 6:1 1200:200 um

100 J Front End – Spatial shaping

Active Shaping system

- Spatial light modulation based on Liquid Crystal phase change
- Allows active control of beam profile and masking damage

Thanks to Martin Divoky

Science & Technology Facilities Council
Central Laser Facility

100 J Front End – Temporal shaping

- Similar to current DiPOLE fibre front end
- IDIL supplying rack mounted system
- In-house control software to individually address 'pixels'
 - Adjust the pulse shape 'on the fly'
- Closed loop control

100 J Front End – Diagnostics

- CW alignment laser injected immediately following Pre-amplifier 1
- 3 x Beam steering systems
 - Automated CW alignment to main beam
 - Inputs to Pre-amplifier 2 and 10 J Amplifier
- 7 x cameras; 2 x Farfield, 5 x Nearfield
- 4 x 10 GHz photodiodes
- 2 x spectrometers
- 4 x energy meters

Thank You!

