

Jun Zhang J. G. Zheng, X. J. Zhang, D. S. Wu, X. L. Tian, K. X. Zheng, Q. h. Zhu junzhang_my@163.com

Research Center of Laser Fusion Chinese Academy of Engineering Physics

Introduction

Design and performances of a R-PEPC

Summary

Introduction

Story of steps towards HEC-RF requirements

Design and performances of a R-PEPC

Summary

- Merits of multi-pass amplifying scheme have been validated in respect of high extraction efficiency, cost saving, and physical size reducing
- In this amplifier, an optical switch is required for laser pulse injecting, ejecting, and parasitic oscillation suppressing
- As for high energy, repetition rate operating, large laser facility

	Parameter	Performance
	clear aperture	multi-cm to tens of cm
	damage threshold	mulit-J/cm ²
whilet 3	temporal response	nanoseconds-scale
	average power intensity	tens W/cm ²
Ŭ,	repetition rate	around 10 Hz

Meeting the required aperture size, damage threshold, temporal response Using thin EO crystal while keeping switching voltage at a low level

Make it appropriate for HEC-rf operation

For LMJ in CEA

For SG-III in RCLF

Introduction Story of steps towards HEC-RF requirements Design and performances of a R-PEPC Summary

Briefly Introducing the concept of PEPC

Research Center of Laser Fusion CAEP

Schematic of the PEPC architecture

Single pulse driven (SPD)

- Without high-current pre-ionization process
 - The gas discharge time is shortened from tens of ms to hundreds of ns.
 - Spotting optical elements, due to cathode sputtering, is reduced.
 - The heat deposition in crystal, heated by cathodes, is reduced.
- The SPD mode is more suitable for rf application.

Drawbacks of SPD for HEC-RF application

- ♦ KDP, DKDP is only available EO crystal which meets requirement of large-dimensions.
- ♦ DKDP, with a lower absorption coefficient (~0.2%cm⁻¹) than that of KDP (5%cm⁻¹), is the best choice at present.

Drawbacks of SPD for HEC-RF application

Research Center of Laser Fusion CAEP

However,

- ◆ The needed voltage to breakdown the gas ≥12 kV, so SPD PEPC generally uses KDP as electro-optic crystal because of its high half-wave voltage.
- The half-wave voltage of DKDP is ~6.8 kV, that is too low to realize single pulse driven PEPC.

- A dividing capacitor is arranged in the circuit.
- Appropriate C_o and U makes that SPD DKDP PEPC works.

A single pulse driven DKDP PEPC Research Center of Laser Fusion CAEP

- ◆ A PEPC is fabricated to examine this scheme
- $\bullet \sim 10^5$ shots operating shows no degrading of transmission rate.
- Neither depolarization loss is observed in 2h continuous operating.

	Parameter	Performance
	Clear aperture: φ 30mm	Rising time: 9.8ns
	DKDP thickness: 3mm	Rep. rate: 10Hz
	Driving voltage: <15kV	Insertion loss: 98.6%
	Extinction ratio: >10 ³ : 1	Switching efficiency: ~99.5%

Thermo-effects arising from DKDP absorption of laser

- Even though DKDP has a lower absorption coefficient, thermo-effects is remarkable.
- Optical switch is sensitive to thermo induced birefringence.
- The deposited heat must be removed in time.

Heat convection coefficient of operating gas

- Optimizing gas-flow distribution and heat convection coefficient by CFD
- Unfortunately, low operating pressure results in a h_c of ~10⁻⁴ W/cm²K.
- This h_c is too small to efficiently remove the deposited heat in crystal.

Quantitatively describing of thermo-effects Research Center of Laser Fusion CAEP

Supposing the laser average power intensity is 30 W/cm²

Demonstrating of the reflective PEPC concept

Research Center of Laser Fusion CAEP

DKDP is longitudinally cooled

- Short heat-flux path-length
- large heat transfer area
- High cooling efficiency
- Small transverse temperature gradients

"Cold" performances not changing		
Parameter	Performance	
clear aperture	40mm×40mm	
Extinction ratio	~1000:1	
Switching efficiency	99.6%	
Driving voltage	12.5 kV	
Rising time	11 ns	
Shot-to-shot jitter	10 ns (mainly from driver)	

Thermal resistivity between DKDP and heat sink Research Center of Laser Fusion CAEP

- Heating source: 980 nm laser, 50 W/cm², beam aperture Φ 20mm
- ◆ Measured thermal resistivity: around 65 cm²K/W

Introduction Story of steps towards HEC-RF requirements Design and performances of a R-PEPC Summary

Design of a R-PEPC for 100J/10Hz amplifier

Si Mirror

Housing body

M Research Center of Laser Fusion CAEP

Output fluence is 5 J/cm² For 100 J/10 Hz application Clear aperture: 45mm×45mm

- ◆ DKDP: 55mm×55mm×6mm
- ♦ Si Mirror: Φ80mm×8mm
- ◆ Matching impedance: 12.5 ohm
- ♦ Plasma Chamber: Φ80mm×8mm

Window

- ◆ Insertion loss: 1.5%
- ♦ theory rising time: 2.5 ns

Gas channel

• Driving voltage: 15.5 kV

- At thermal steady-state, max temperature rise in DKDP is 2.5
 °C, whereas temperature difference is 0.6 °C
- There is a temperature drop of 1.8 °C between DKDP and Simirror contact surfaces due to contact thermal resistivity.

Depolarization & wavefront distortion

- ◆ Maximal depolarization: 0.22%, located at corners of the laser beam
- Average depolarization: 0.02%, over the laser beam
- Wavefront distortion: 0.18 λ (λ =1030 nm)

Introduction

Story of steps towards HEC-RF requirements

Design and performances of a R-PEPC

Summary

- We introduce challenges that PEPC encounters for HEC-rf application
 - One single pulse driven DKDP PEPC
 - Thermo-effects
- and their tactics are demonstrated.
 - Capacitance dividing voltage method
 - Reflective design and conduction-cooling
- ♦ At last, we present the design of a R-PEPC for 100J/10Hz amplifier application, and its performances are discussed.

