Design of a 100 Joule, 10 Hz HEC-DPSSL Power Amplifier

<u>Paul Mason</u>, Andrew Lintern, Stephanie Tomlinson, Oleg Chekhlov, Mariastefania De Vido, Mike Fitton, Chris Hooker, Steve Hawkes, Marco Galimberti, Klaus Ertel, Saumyabrata Banerjee, Jonathan Phillips, Jodie Smith, Justin Greenhalgh, Cristina Hernandez-Gomez, John Collier

8th HEC-DPSSL Workshop 27th March 2014, Oxford, UK

paul.mason@stfc.ac.uk

STFC Rutherford Appleton Laboratory, R1 2.62 Central Laser Facility, OX11 0QX, UK +44 (0)1235 778301

Motivation

- Develop next generation high-energy PW-class lasers
 - Multi-J to kJ, multi-Hz, multi-% efficiency

New generation of laser-matter interaction facilities

- Develop real world applications
 - Industrial materials processing
 - Laser driven X-ray & proton sources
 - Inertial confinement fusion

CALTA

Centre for Advanced Laser Technology & Applications

- High-energy DPSSL amplifiers needed
 - Direct & indirect sources

100J Amplifier System

Control system

Baseline Design for 100J Amplifier

Cryogenic gas-cooled multi-slab amplifier DiPOLE

- Proven DiPOLE technology with F_{extraction} = 2 J/cm²
- Single head seeded by 10 J cryogenic pre-amplifier
- 6 x square ceramic Yb:YAG gain slabs
 - 3 x doping concⁿ, Cr-doped cladding
- End-pumped by two 940 nm diode systems
 - Angular multiplex coupling > 250 kW each
- LN₂ based helium cooler
 - Low risk, low cost technology
 - Design temperature ~ 150K
- 4-pass extraction architecture
 - Relay imaging
 - Spatial beam stabilisation
 - Active wave front control

Baseline Modelling

Ceramic YAG Gain Media

- 6 x Yb:YAG ceramic slabs
 - 120 mm x 120 mm square x 8.5 mm thick
 - Yb-doped region 100 mm x 100 mm
 - Doping 0.4, 0.6 & 1.0 at.%
 - Cr⁴⁺ cladding 10 mm wide
 - Attenuation = $3 \pm 1 \text{ cm}^{-1}$ @ 1030 nm
 - $T_{1030}^{\text{ext}} = 2 \text{ to } 11\% \text{ for } 10 \text{ mm}$
 - PSD specification to minimise spatial inhomogeneities in transmitted wave front
- Supply of test samples
 - Confirm required Cr attenuation level
 - $T_{1030}^{\text{ext}} \sim 9\%$, $\alpha_{1030} = 2.3 \text{ cm}^{-1}$
 - Uniformity of cladding attenuation

Amplifier Head Design

Key features

- Ease of access to gain cartridge
- Re-usable pressure seals
- Compact
- Improved angular acceptance
- Option for internal alignment reference
- Optimised inlet gas flow conditioning
- Independent vacuum in head

CFD Modelling & Thermal Aberrations

He

flow

Pump Diode Sources

Pump coupling scheme

- Improvements in diode brightness allow angular multiplex coupling
- Removes need for polarisation sensitive dichroic coupling mirrors

Specification

- 2 x 250 kW peak power
- 0.5 to 1.5 ms pulses
- Single-shot to 10 Hz
- Square 78 mm x 78 mm beam
- Working distance ~2.5 m
- Centre wavelength 939.5 nm
 - 30% energy within ± 1 nm
 - 76% energy within -3.5 nm to +2.5 nm
- Target brightness ≥ 1.3 MW/cm²/sr
- Divergence ratio 2.5°: 5.0° (H: V)
- Built-in optical diagnostics
- Integrated alignment laser

Pump Diode Sources

- Industrial consortium led by Ingeneric
 - Ingeneric Optical design & integration
 - Amtron Drivers, control system & cooling
 - Trumpf Diode stacks

Design

- 3 x 3 array of diode manifolds each manifold with 3 x 25-bar stacks
- Target 12.5 kW per stack
 - i.e. 500W per bar at ~ 550 A
- Homogenisation using combination of conventional optics & micro-lens array
- Working distance ~ 2.5 m from field lens to target plane
- 1/3rd scale pilot laser demonstration
 - end April 2014

Cryo-Cooling System

Inlet transfer pipe

- Cryostat under construction
 - Air Liquide Advanced Technologies, Grenoble, France AIR LIQ

- Design concept similar to DiPOLE 10J
 - Similar temperature & pressure ranges
 - Low risk
- Increased cooling capacity
 - Up to 6 kW
- Magnetic bearing circulating fan technology
 - Maintenance free & long lifetime
- Continuous filtering of helium gas flow
- Independent vacuum in transfer lines

100J Power Amplifier

Diagnostic Systems

Multi-pass Design

- 4F relay imaging design
 - Maintain total telescope length to within 20% (4.2F)
- Asymmetric positioning of telescopes
 - Remove risk of collimated 'pencil beams' focusing into amplifier
- Asymmetric angular multiplexing of amplified beams
 - Minimise risk of coupling reflected beams from amplifier optics into other passes
 - Horizontal = \pm 5 degrees
 - Vertical (input & pass 1) = \pm 5 degrees
 - Vertical (passes 2 & 3) = \pm 1.5 degrees
- Tilt telescope lenses to minimise astigmatism
 - Lenses tilted in opposite directions
- Periscope after 2nd pass
 - Compensate for beam rotation
 - Beam stabilisation

View from input mirror plane

Summary

- 100J power amplifier optical design completed
 - Based on proven DiPOLE 10J cryo-cooled Yb:YAG technology
- Mechanical component design commenced
- Optical installation scheduled to begin end July 2014
 - Demonstrate scalability of technology
 - Amplifier, pump diode systems, gain media
- HEC-DPSSL development in CALTA
 - 100J system for European XFEL

100J Laboratory

