

Status of the POLARIS laser system

Marco Hornung, S. Keppler, H. Liebetrau, A. Kessler, A. Seidel, M. Hellwing, F. Schorcht, J. Körner, A. Sävert, J. Polz, G. Becker, A.K. Arunachalam, D. Klöpfel, J. Hein, and M. C. Kaluza

Helmholtz Institute Jena, Germany

Institute of Optics and Quantum Electronics, FSU Jena, Germany

8th workshop on High-Energy-Class Diode-Pumped Solid-State Lasers, Oxford, 26th March 2014

Outline

- POLARIS overview
- High energy pulse amplification
- High contrast frontend
- Pulse characterization & results
- Conclusion

Petawatt Optical Laser Amplifier for Radiation Intensive ExperimentS

fully diode-pumped $\lambda_c = 1030 \text{ nm}$ pulse energy = 6.5 J (16.6 J) / 4 J on target pulse duration = 145 fs peak intensity = $3.5 \times 10^{20} \text{ W/cm}^2$ temporal contrast for ASE > 5×10^{12} 1 shot every 40 s

More than 17000 high energy shots in laser matter experiments !

Used targets:

- thin foils (down to 100 nm thickness)
- water droplets (20 μm)
- sandwich foils
- gas-jet
- hydrogen droplets (cryo-cooled, 6-7 μm) (currently used target)

Diagnostics:

- Multi-channel plate (online, energy, ions)
- Scintillation screen & gateable, fast CCD (online, spatial & energy distribution, ions)
- CR-39 Stack (energy, spatial distribution, ions)
- In-vaccum, soft X-ray camera & bent crystal (spectral & spatial resolution)
- 2ω or 3ω online focal spot diagnostics
- target back-side deformation (Nomarski-Interferometer)
- Synchronized side-view (532 nm, 1 ns)
- e⁻ spectrometer
- 150 fs low-energy probe pulse unit,
- variable pre-pulse unit
- backreflection diagnostic for safe laser operation

- POLARIS overview
- High energy pulse amplification
- High contrast frontend
- Pulse characterization & results
- Conclusion

· A · IOO /

A5 setup

Status of the POLARIS laser system

March, 26, 2014 - HECDPSSL Oxford

A5 photography

- Active material:
 - Yb:CaF₂ (1.7 at.%)
 - 65 mm diameter
 - 30 mm thickness
- beam diameter approx. 35 mm (FWHM)
- 9-pass configuration

1 2m 2 5 6 7 8 9 10 11

Yb:CaF₂ made by HellmaMaterials / Jena

A5 pump profile homogenization

Main challenges:

- Homogenize pump profile with 120 Stacks (LabII adaptive strategy¹)
- Automatisation

Measured pump profile with 780 J pump energy

¹ B. Schmidt, M. Hacker, G. Stobrawa, T. Feurer; LAB2-A virtual femtosecond laser lab, http://www.lab2.de

Status of the POLARIS laser system

0.1J input

2.5J input

8J input 10J input

8

16.6 J pulse energy with 10 nm FWHM-bandwidth

A. Kessler et al., "16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF₂ amplifier", Optics Letters 2014

Status of the POLARIS laser system

March, 26, 2014 - HECDPSSL Oxford

Pulse duration measurement in the far-field:

Transport beamline & telescope to compressor:

Spectral intensity:

Status of the POLARIS laser system

- POLARIS overview
- High energy pulse amplification
- High contrast frontend
- Pulse characterization & results
- Conclusion

Motivation: "old" ASE Characteristics of POLARIS

Measurement of energy, pulse duration and focal spot size.

2 mJ pulse energy in a 130 fs laser pulse.

Öffner stretcher

- pulses stretched from 90 fs to 20 ps
- hardclip: 45 nm, efficiency 65%

50x50 mm² gold grating, 1200 lines/mm

small footprint: $40x20 \text{ cm}^2$

Treacy compressor

- 50x50 mm² gold gratings separated by ≈ 9 cm
- transmission 75%
- small footprint 20x20 cm²
- pulses are compressed to Fourier-limit (Gaussian pulse) of 130 fs
- 2 mJ pulse energy after compression

- crossed polarizers with high extinction ratio $R=2.10^{-6}$
- 1 m focusing and collimating lenses
- 2 mm BaF₂-crystal
- vacuum-housing due to high intensities

Up to 200 µJ pulse energy!

Near-field profile:

• intentionally decreased the ASE contrast by decreasing seed of amplifier !

- POLARIS overview
- High energy pulse amplification
- High contrast frontend
- Pulse characterization & results
- Conclusion

Tiled-Grating Compressor

M. Hornung et al., Appl Phys B, 101: 93–102, (2010).

March, 26, 2014 - HECDPSSL Oxford

Far-field Analysis for tiled-grating alignment

Achieved experimental errors:

rotational: $< 0.2 \mu rad$ translational: < 20 nm

➔ Enough to ensure more than 90 % of the peak intensity for a 140 mm diameter, f/2-focussed, 150-fs-pulse (compared to a monolithic grating).

Tiled-grating alignment & shortest pulses

Spectrally resolved far-field measurements:

M. Hornung et al., Opt. Lett., 35 2073, (2010).

Installation of a Wizzler & Dazzler loop:

Degraded 10 year old roof-mirror:

aktuell A2 - 25mJ 0,1 Januar 2012 - 30mJ 0,01 Intensity [a.u.] 1E-3 1E-4 1E-5 1E-6 1E-7 -9 -6 -3 3 6 0

Improved ps-contrast:

Time [ps]

Installation of a Wizzler & Dazzler loop

Status of the POLARIS laser system

ASE at 2x10⁻¹³ relative intensity (38nJ) with XPW frontend.

TNSA p⁺-acceleration: target thickness scan

Target thickness for highest p⁺-energy decreases with improved contrast!

Experimental Performance - TNSA

Proton cutoff energy [MeV] Maximum proton cut-off energy of 17.7 MeV Proton cutoff energy: (11.7 ±0.8) MeV with 2.3 J of laser energy and a 2 μ m Ta-foil. Target: 2.5µm Copper Intensity: 6.7 10¹⁹ W/cm² 2 µm Ta-foil as target ^{'o}o_no 400 nm Al-foil as target • • dN/(dE*dΩ) [a.u.] Soodogog Shot number Average pulse duration: 159 fs Pulse duration [fs 0,1 Energy [MeV]

Laser performance

Pulse duration:

Focal Spot in Targetarea with adaptive optics:

Status of the POLARIS laser system

March, 26, 2014 - HECDPSSL Oxford

POLARIS as a fully diode-pumped laser is in experimental operation.

(more than 17000 high intensity experiment-shots)

Improvements in terms of temporal contrast and pulse energy was done.

Pulse parameters:

- 3.5×10^{20} W/cm² peak intensity
- •4 J on target pulse energy (16 J out of A5 soon available)
- 145 fs pulse duration
- Relative temporal contrast of 2×10^{-13} for ASE and 10^{-8} for (some residual) pre-pulses.

M. Hornung et al., "High intensity, high contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS", Optics Letters 2013. A. Kessler et al., "16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier", Optics Letters 2014

Thank You!

Status of the POLARIS laser system

March, 26, 2014 - HECDPSSL Oxford

