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Introduction

Fluid model: describe plasma in terms 
of macroscopic (averaged) quantities:
–Average velocity
–Charge and current density
–Temperature, pressure
Governed by equations of state, 
together with Maxwell’s equations



Basics

Consider a plasma consisting of 
electrons and one or more ion species
–Particle charge, mass: Zαe and mα

–Species density, velocity: nα(x,t), vα(x,t)
–Fully ionised
–(Almost) all collisions are elastic
–No ionisation, recombination, radiation
Number of particles is conserved for 
each species



Particle conservation

Consider a small volume of plasma:

Change in number of particles =
Particle flux into volume —
Particle flux out of this volume
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Particle conservation

In one dimension:

or:
In three dimensions:

Continuity equation
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Momentum conservation
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Change in momentum = Flux in —
flux out + pressure left — pressure 
right + volume forces



Intermezzo: tensors

Particle flux: simple vector, one bit of 
information: direction of flux
Momentum flux: two bits of 
information: direction of momentum 
that fluxes, and direction of flux
Cannot be expressed as vector!



Tensors 2

Momentum flux is tensor (matrix):

First index: which momentum 
component fluxes

Second index: component of 
direction of flux
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Tensors 3

Pressure is also a tensor: need to 
consider direction of pressure force, 
and direction of normal vector on 
surface!

First index: component of force
Second index: component of surface 
normal
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Simple tensor rules

Divergence of tensor is vector:

Gradient of vector is tensor:

Two vectors can make a tensor:
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Momentum balance
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Example 1: static “flow”

Fluid is static, v=0, pressure forces 
balance volume forces:

Added gravity force -ρ*g
Consequence: P = ρ*g*h for constant 
gravity and fluid/plasma depth h
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Example 2: steady flow

Drop all time derivatives, use gravity 
for the volume force:

Use isotropic P and sum over tensor 
diagonals: Bernouilli’s equation!
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Closing the system

The continuity equation together 
with the momentum balance do not 
constitute a closed system
Need to add equations of state for 
pressure P and collision terms R
Think of: Ohm’s law, expressions for 
adiabatic or isothermal compression



Pressure

Write the pressure tensor as follows:

Fast processes in collision-poor 
plasma are adiabatic:

Slow processes in collision-rich 
plasma are isothermal:
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Distribution function

For each particle species, a distribution 
function fα is introduced
Number of particles in volume element:

This number is changed by collisions:
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Boltzmann equation
We have:

but also:
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Boltzmann equation
Boltzmann equation (Ludwig 
Boltzmann, 1844-1906)

Collisional term:

No collisions: Vlasov equation 
(Anatoly Vlasov, 1908-1975)
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Charge, current

Particle density:
Average velocity:
Charge density:
Current density:
Sources for Maxwell’s equations
The Vlasov-Maxwell system is closed
The Vlasov-Boltzmann system needs 
an additional collision model
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Moment equations

Vlasov equation hard to tackle 
analytically
Solution: use moments:
–Multiply by some power of v
–Integrate over all v
–Use:
–Define:

for any function Ψ
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Particle conservation

Use           to obtain “zeroth” order 
moment equation:

Note that this equation contains the 
first order moment u. 
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Momentum conservation

Use             to obtain first order 
moment equation:

Note that this equation contains the 
second order moment <vv>. 
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Energy conservation

Use                 to obtain second order 
moment equation:

Note that this equation contains the 
third order moment <v2v>. 
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Closing the system

Moment equation of order n contains 
moment of order n+1.
System is never closed!
Need to provide equation of state for 
highest order moment (or just drop it):
–Neglect heat flux (fast processes)
–Prescribe pressure
–Add viscosity model



Grooming the equations

Relative velocity:
Pressure tensor:
Isotropic pressure:
Kinetic temperature:
Heat flux:
Collisional exchanges:  
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Momentum revisited

Insert “physical” quantities and subtract 
u*(continuity equation):

Flow equation of electron/ion fluid
Left: advection
Right: pressure, viscosity, Lorentz force, 
momentum exchange between species
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Energy revisited
Insert “physical” quantities and subtract 
u2*(continuity equation) and 
u·(momentum equation):

Left: Internal energy, work
Right: heat flux, viscosity, heat 
exchange between species 
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Example: adiabatic 
compression

Need to provide expressions for viscosity, 
heat flux, friction, heat exchange between 
species, to close system.
For adiabatic compression:
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Recap of all components

Continuity:
Momentum:

Collisions:

Pressure: 
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Pressure:

Maxwell’s equations for E and B 
complete the system
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Radiation in plasma
Radiation plays a central role in high-density 
plasma:
Transfers energy from hot to cold regions
Radiation often more effective for transporting 

energy than thermal conduction
Connects time evolution of distant plasma 

regions
In laser-produced plasma: decreases laser 

driving pressure and increases “preheat”



Radiation: basics
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For homogeneous, isotropic radiation in TE: Planck formula
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Energy density:

Flux:

Pressure:
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Radiation transfer

streaming in/out
absorption
out-scattering
in-scattering
emission

Transfer equation:
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Quantum effects
Photons are bosons: emission and scattering are 
proportional to the number of photons in the final 
state – induced processes
Quantum and classical probability are related via
P’ = P(1+n) where n is the number of photons in 
the unit cell of phase space:

Transfer equation becomes:

( ) ( )tvrI
h
ctvrfddrdn ,,,

2
,,, 3

2

Ω=ΩΩ= ∫∫ ∫
Δ

rrrrrr

ν
ν

( ) ( ) ( ) ( ) ( ) ( ) sisa hII
h
cII

h
cjI

t
I

c
Σ+Ω⎥

⎦

⎤
⎢
⎣

⎡
++Ω−⎥

⎦

⎤
⎢
⎣

⎡
+=Ω∇⋅Ω+

∂
Ω∂ νν

ν
αννα

ν
ννν rrrr

r

,
2

1,
2

1,,1
3

2

3

2



Neglect scattering
Drop scattering terms but retain quantum effects 
(needed to recover the Planck equilibrium 
distribution):

In TE, absorption and emission are connected via 
Kirchhoff’s law:

Use the Planck function, Bp(v) to obtain

The exponential factor decreases the absorption 
due to stimulated emission
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Summary

Fluid models are used to describe 
macroscopic plasma behaviour
Equations of state needed to close 
system of equations
These may be derived from an analysis 
of microscopic processes
Radiation models needed for dense 
plasma fluid models; see also lectures 
by Profs. T. Bell and S. Rose
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