Atomic Physics and High Energy Density Plasmas

Steven Rose Imperial College UK

Fully- ionised plasma

Partially- ionised plasma

Low and high density plasma pictures

Low-density picture

- Debye-Huckel theory holds (weak coupling)
- Maxwellian free electron velocity distribution
- Bound electronic structure same as in the free ion

High-density picture

- Debye-Huckel theory does not hold (strong coupling)
- Fermi degeneracy of free electron distribution
- Bound electronic structure altered from that of free ion
 - Continuum lowering / pressure ionisation
 - Bound electronic wavefunction overlap

Strong-coupling

$$\Gamma_{ii} = \frac{Z^{*2}e^2}{4\pi\varepsilon_0 RkT_i}$$
potential energy kinetic energy

$$\Gamma_{ii}$$
 < 1 weak coupling – Debye-Huckel theory holds

 $\Gamma_{ii} > 1$ strong coupling – Debye-Huckel theory does not holds

Free electron degeneracy

The probability of occupancy of a free electron state is

$$p = \frac{1}{\left[\exp(\varepsilon - \mu)/kT\right] - 1} \qquad \mu/kT = \eta$$

$$\lambda << r_{ee} \qquad \eta << 0 \qquad \text{non-degenerate}$$

$$\lambda >> r_{ee} \qquad \eta >> 0 \qquad \text{degenerate}$$

Strong-coupling and degenerate regions in plasmas

Density (g/cm³)

More, UCRL-84991, 1982

Effect of strong-coupling on ion distribution

Brush, Salin and Teller, JChemPhys (1966)

Correction factor for degeneracy in bound-free transitions

$$\phi_{bf} = \frac{1}{1 + \exp\left\{-\left[\frac{hv - I}{kT}\right] + \eta\right\}}$$

Correction factor for degeneracy in free-free transitions

$$\phi_{ff} = \frac{\sqrt{\pi}}{2I_{1/2}(\eta)(1 - e^{-u})} \ln \left[\frac{1 + e^{\eta}}{1 + e^{\eta - u}} \right]$$

Continuum lowering / pressure ionisation

Saha equation and continuum lowering

$$\frac{n_{i+1}n_e}{n_i} = \frac{2Q_{i+1}(T)}{Q_i(T)} \frac{\left(2\pi m_e kT\right)^{3/2}}{h^3} e^{-I/kT}$$

$$Q_{i}(T) = \sum_{r} g_{r,i} \exp(-(\varepsilon_{r,i} - \varepsilon_{1,i}) / kT)$$

For a H-like ion the sum diverges

$$Q(T) = \sum_{n=1}^{N} 2n^{2} \exp\left(-\frac{Z^{2}I_{H}}{kT} \left[1 - \frac{1}{n^{2}}\right]\right)$$

Sum diverges as N→∞

Degeneracy correction to ionisation equilibrium

Usual calculation of the electronic structure of a partially-ionised plasma

- Calculate the isolated ion structure. The effect of the plasma is included by perturbation theory.
- Calculate the (spherically-symmetric) potential including the effect of the plasma neighbours. Calculate the electronic structure using this potential.
- Each treatment uses single-centre wavefunctions.

Continuum lowering in the ion-sphere model

potential at radius r
$$V(r) = \frac{Z^* e}{8\pi\varepsilon_0 R} \left[\frac{r^2}{R^2} - 3 \right]$$

perturbation from field-free case

$$\Delta \varepsilon = \int d\tau (-e\,\psi^2) V$$

Continuum lowering in the ion-sphere model II

K-shell ionisation

$$\Delta E = \int (-e\psi_f^2) \frac{Z^* e}{8\pi\varepsilon_0 R} \left[\frac{r^2}{R^2} - 3 \right] d\tau - \int (-e\psi_i^2) \frac{Z^* e}{8\pi\varepsilon_0 R} \left[\frac{r^2}{R^2} - 3 \right] d\tau$$

shift in transition energy

$$\Delta E = \frac{Z^* e^2}{8\pi\varepsilon_0 R} \left[\frac{\sum_{k} n_k^f \langle r_k^2 \rangle^f - \sum_{k} n_k^i \langle r_k^2 \rangle^i}{R^2} - 3 \right]$$

$$\Delta E = -\frac{3Z^*e^2}{8\pi\varepsilon_0 R} + \frac{Z^*e^2\Delta\langle r^2\rangle}{8\pi\varepsilon_0 R^3}$$

Effect of strong-coupling on ion distribution

Brush, Salin and Teller, JChemPhys (1966)

The NIF ignition target

Bromine doped plastic opacity (50eV and 70gcm⁻³)

Ultra-short-pulse (sub 10fsec) beam can produce moderate temperature, solid density plasma

heating within skin depth

XUV spectroscopy of sub 10fsec laser-solid interaction

- Ly-α and He-α lines indicate hot (approximately 100eV) plasma
- Lack of Ly-β or He-β lines indicates near solid density (approximately 1gcm⁻³) plasma

Osterholz et al, Physical Review Letters (2005), Physics of Plasmas (2006)

Transient molecules in a plasma

Rose, J. de Physique (1983)

Transient chemistry revealed by molecular wavefunctions

- A consideration of transient molecules predicts contributions to plasma properties not arising in single-centre treatments.
- Transient chemistry is only revealed by use of two-centre (or in general multi-centre) electronic wavefunctions.

H₂⁺ transient molecules in a low-temperature, partially-ionised plasma

- Accurate wavefunctions known for H₂⁺
- Two transitions studied

Rose, J. de Physique (1983)

$H_2^+ 1s\sigma_g \rightarrow 2p\sigma_u$ transition

- Bonding antibonding transition
- Photon absorption moves electron density from between the nuclei to either side of the nuclei

$$\Psi_{1s\sigma_g} = \frac{1}{\sqrt{2}} (\Phi_{1sa} - \Phi_{1sb})$$

$$\Phi_{1s\sigma_g} = \frac{1}{\sqrt{2}} (\Phi_{1sa} + \Phi_{1sb})$$

Rose, J. de Physique (1983)

Bonding – antibonding transition transfers photon energy to kinetic energy of ions

$H_2^{+} \, 1s\sigma_g \! \to \! 2p\pi_u$ transition

Partially- ionised plasma

Transient molecules predicts new energy couplings

General expression for the partition of energy

Assume low-density limit (potential energy curves horizontal at average internuclear separation).

of large internuclear separation

photon energy absorbed

$$1s\sigma_{\rm g} \rightarrow 2p\sigma_{\rm u} \qquad \Delta\varepsilon^{ex} = 0 \qquad \Delta\varepsilon^{i} = h\nu$$

$$1s\sigma_{\rm g} \rightarrow 2p\pi_{\rm u} = \begin{cases} h\nu > \Delta\varepsilon^{ex} & \Delta\varepsilon^{i} > 0 \\ h\nu < \Delta\varepsilon^{ex} & \Delta\varepsilon^{i} < 0 \end{cases}$$

Energy pathways in HEDP plasma

Transient molecular method provides a new line shape model

Gauthier, Rose et al, PRE, (1998)

Grevesse 20 element stellar opacity at Sun centre (X=0.35, Z=0.0195, 1.3621keV, 157.02gcm⁻³)

Transient molecules at the Sun centre

Rose, Foulis and Beynon, J Phys B, (1998)

One-electron transition energies for 1s→2s and 1s→2p in Fe²¹⁺and Fe²²⁺

Rose, Foulis and Beynon, J Phys B, (1998)

Ratio of oscillator strength $f(r)/f_{1\rightarrow 2}(\infty)$ for $1s\rightarrow 2s$ and $1s\rightarrow 2p$

Fe²¹⁺

Rose, Foulis and Beynon, J Phys B, (1998)

Nearest neighbour distribution of protons around iron ions at Sun's centre

Rose, Foulis and Beynon, J Phys B, (1998)

Workshop shows large disagreement between codes Carbon (20eV, 10gcm⁻³)

Calculation of K-shell photoabsorption in carbon (20eV, 10gcm⁻³) using multicentre wavefunctions

CC₈ cluster in a super cell

Foulis, Rose and Beynon, JQSRT, (1997)

Calculation of C⁴⁺ K-shell photoabsorption in carbon (20eV, 10gcm⁻³) using single-centre wavefunctions

Foulis, Rose and Beynon, JQSRT, (1997)

Variation in C⁴⁺ photoabsorption cross-section in carbon (20eV, 10gcm⁻³) using multi-cetre wavefunctions with contraction in the A1_g (breathing mode) of CC₈ cluster

Foulis, Rose and Beynon, JQSRT, (1997)

Transient molecules predict new effects

- Single-centre wavefunctions cannot account completely for the change in wavefunction due to neighbouring ions in a plasma.
- Two-centre (in general multicentre) wavefunctions are needed.
- Calculations that involve the wavefunctions (rather than using density functional theory which have been undertaken for equation of state calculations) are very complex even for today's computers
- Atomically allowed absorption altered.
- Extra absorption mechanisms introduced.
- Stark line shapes are altered.
- Energy coupling altered ω_{ri} and ω_{ei} introduced.
- Validity of Born-Oppenheimer approximation need to break the approximation to allow electron-ion energy exchange.