Hybrid Codes

A.P.L.Robinson Central Laser Facility STFC Rutherford-Appleton

A Standard Tool

Hybrid Codes: A **reduced** model that incorporates **most** relevant physics and runs **quickly**.

Excerpt from J.S.Green et al., *Nature Physics*, 2007 Illustrates many of the important aspects and appealing features of hybrid codes.

Content

- Definition
- Physics motivation for using hybrid codes.
- The Hybrid Approximation & Code Structure
- Resistivity
- What can we do with hybrid codes?
 - Fast Ignition
 - Cold Target Effects in Solid Target Interactions
 - Exploiting Resistivity

Preamble

Definition

- Term "hybrid code" or "hybrid model" crops up frequently in physics to mean many different things.
- Good example: hybrid code to a space physicist means "fluid electrons + kinetic ions"-type code
- In current laser-plasma studies we are particularly interested in the behaviour of "fast" (multi-MeV) electrons moving in a relatively cold dense plasma.
- Therefore we tend to mean the following:
 - Small population of very energetic electrons (kinetic)
 - Large background of cold electron (fluid)
 - Static or fluid ion background

Essence of Hybrid Codes

- Relativistic Electrons: Nonthermal, anisotropic, highly variable collisionality
- Cold Background: Highly collisional, near-Maxwellian, v.dense
- Collisions + Resistivity important: Resistive field generation & energy deposition
- <u>Fast Tool for Large Scale</u>
 <u>Problem</u>

Need a kinetic component with collisions

Want to just treat as a fluid

Need to incorporate resistivity and collisional energy deposition

Must run quickly and be able to solve full problem

Physical Motivation

Main Justification for Hybrid Codes

- Full calculations (e.g. via collisional PIC) of fast electron transport through dense plasma require very large computational resources.
- Sacrifice some degree of accuracy to produce a "reduced model" that will run quickly and allow one to carry out useful calculations.

General Situation of Interest – A Sketch

- Fast Electron Physics
 - Small population
 - Low collision rate
 - Non-thermal / Anisotropic
 - Treatment by fluid equations not sufficient
 - Must treat kinetically

Typical fast electron scattering time assuming Beg's Law scaling.

$$\alpha I = n_f v_f T_f$$

$$I \sim 10^{20} \text{W cm}^{-2}$$

$$v \sim c$$

$$T \sim 0.3\text{-}10 \text{MeV}$$

$$\alpha \sim 0.1\text{-}0.5$$
So
$$n \sim 10^{20}\text{-}10^{21} \text{ cm}^{-3}$$

$$n \sim 0.1\text{-}1 n_c$$

$$I \sim 10^{18} Wcm^{-2} \text{ (1 micron wavelength)}$$

$$n_c \sim 10^{23} cm^{-3} \text{ ; } Z = 13 \text{ (Al)}$$

$$t \sim 4.6 ps$$
 Dr.A.P.L.Robinson, CLF, Winter School 2011

General Situation of Interest – A Sketch

Cold Electron Physics:

- The bulk population
- $(n_c \sim 10^{29} 10^{32} \text{m}^{-3})$
- Relatively low energy
- $(T_c \sim 1eV 10keV)$
- Highly collisional (and resistive)
- Fairly close to equilibrium distribution (e.g. Maxwellian)
- Degeneracy and quantum effects may be important.
- Want to treat as a fluid!

$$\tau_{ei} = 0.028 \frac{4}{Z} \left(\frac{T_c}{keV} \right)^{3/2} \left(\frac{10}{\ln \Lambda} \right) \left(\frac{n_c}{10^{22} cm^{-3}} \right)^{-1} \text{ psec}$$

$$T_c \sim 1 \text{keV}$$
 $n_c \sim 10^{23} \text{cm}^{-3}$; $Z = 13$ (Al)
 $\ln \Lambda \sim 10$
 $t \sim 0.86 \text{fs}$

Compressed Fast Ignition fuel At 10²⁶cm⁻³

$$E_F = \frac{\hbar^2}{2m_e} (3\pi^2 n_c)^{2/3}$$

 $E \sim 200eV$ in compressed fuel

General Situation of Interest – A Sketch

- Scales:
 - Hydrodynamic:
 - Fuel dis-assembly time ~ 10ps
 - Foil decompression time > 10ps
 - Cold electrons:
 - Cold electron Debye length < ınm
 - Cold electron plasma period < 1fs
 - Fast electrons:
 - Fast electron propagation distance > 100 μm
 - Fast electron Debye length ~1μm
 - Fast electron pulse duration ~ 1-10ps

Fully kinetic needs to resolve these scales

Hybrid only needs to resolve these scales

Hard to deal easily with such disparate scales!!

Rudimentary Electrodynamics

- The "gist":
- Basic 1D model:

$$\frac{\partial u_c}{\partial t} = -\frac{eE}{m_e} - \frac{u_c}{\tau}$$

$$\frac{\partial E}{\partial t} = \frac{en_c u_c}{\varepsilon} + \frac{en_f u_f}{\varepsilon}$$

$$z = x - u_f t$$

$$\frac{e^2 n_c}{\varepsilon m_e u_f^2}$$

$$\frac{c}{\omega_{p,c}} = O(10nm)$$

$$n_c u_c = n_f u_f$$

$$\frac{n_f}{n_c} = 0.001 - 0.01$$

$$u_c \approx 10^5 - 10^6 \,\text{ms}^{-1}$$

Role of Resistivity I:

- Fast electron current density is > 10¹⁴Am⁻²
- Must be balanced by a *local* return current to a good approximation
- In collisionless plasma the electric field required for this will be tiny.
- Not interested in small fluctuations.
- In a resistive plasma it will be significant.
- Thus resistive inhibition is possible.

Spitzer Resistivity
$$\eta \cong 10^{-4} \, \frac{Z \ln \Lambda}{T_{c,eV}^{3/2}}$$

Z=13, T = 100eV,
$$\eta \sim 10^{-6}\Omega m$$

$$\mathbf{j_f} + \mathbf{j_c} \approx 0$$

$$\mathbf{E} \approx -\eta \mathbf{j}_f$$

For 10^{16} Am⁻² E ~ 10^{10} Vm⁻¹

i.e. 1MeV in 100 microns

Role of Resistivity II:

- Since curl of electric field is not zero, B field will be grown.
- Typical rate of field growth can be estimated from Faraday's Law
- 100T fields with spatial sizes on the micron scale are sufficient to strongly deflect and guide electrons
- Therefore magnetic collimation and filamentation are distinct possibilities

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\frac{B}{t} \approx \frac{\eta j_f}{L}$$

$$t \sim 1ps$$
; $\eta \sim 10^{-6}$
 $j \sim 10^{16} Am^{-2}$
 $L \sim 10 \ \mu m$
So...
 $B \sim 1000 T$

Role of Resistivity III:

- Resistivity also means that Ohmic heating will be strong.
- Heating to 100s of eV is possible.
- Therefore solid targets will be heated significantly by Ohmic mechanism.
- In compressed ICF fuel the fast electrons are stopped quickly by <u>collisional drag</u> instead of Ohmic heating.

$$\frac{\partial T_{c,eV}}{\partial t} = \frac{\eta j^2}{eCn_c}$$

$$\frac{\partial T_{c,eV}}{\partial t} \approx 10 \text{eV/fs}$$

$$\eta \sim 10^{-6}$$
 $j \sim 10^{16} \text{Am}^{-2}$
 $n_c \sim 10^{23} \text{cm}^{-3}$

Resistive Fields + Heating

- So we can simplify numerical simulation if we
 - Treat only the fast electron kinetically
 - Treat the bulk plasma as a fluid
- This allows us to
 - Use much larger cell sizes and timesteps
 - Reduce Maxwell's Equations
 - Include resistivity more easily
 - Easily include cold target physics
- This depends on the previous arguments amounting to being good approximations.
- Hybrid codes do rely on approximations.

Essence of Hybrid Codes

- Relativistic Electrons: Nonthermal, anisotropic, highly variable collisionality
- Cold Background: Highly collisional, near-Maxwellian, v.dense
- Collisions + Resistivity important: Resistive field generation & energy deposition
- <u>Fast Tool for Large Scale</u>
 <u>Problem</u>

Need a kinetic component with collisions

Want to just treat as a fluid

Need to incorporate resistivity and collisional energy deposition

Must run quickly and be able to solve full problem

Hybrid Approximation and Code Structure

Key features

- Kinetic Treatment of Fast Electrons
- Background Plasma treated as a resistive fluid
- Use reduced Maxwell's equations

Fast electrons

- Fully kinetic
- Include E and B (which will be resistively generated)
- Scattering and Drag included (particularly important at high density)

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f}{\partial \mathbf{p}} = C(f)$$
Resistive Fields Scatter and Drag

 Effectively solve the Kinetic (or Vlasov) equation by using Particle-in-Cell methods

Background Plasma I

- Background is a fluid. Describe by density, velocity, and internal energy.
- Can treat this as a static fluid if hydrodynamic motion can be neglected.
- In this case background has a fixed density, but T will vary (so electron density and Zifagefella Yaffyiffayyaflaynamic/fluid description

Minimal set

$$\frac{\partial T_{c,eV}}{\partial t} = \frac{\eta j^2}{eCn_c} + D_f$$

$$\eta = \eta(T)$$

Heating of background by Ohmic Heating + Drag on Fasts

Resistivity (Temperature dependent)

Background Plasma II

- If hydrodynamic motion is important then we need to evolve the background via MHD equations
- So the standard considerations for a hydrocode apply to this (recall hydro lecture!)
- Electron-Ion energy exchange and radiative cooling might be important on these time-scales
- Nonetheless the resistivity is usually the most important aspect of the background plasma to consider.
- In high temperature weakly coupled plasmas one can use the Spitzer resistivity
- Otherwise accurately determing the resistivity + background atomic model in general can be difficult.

$$\eta = ?$$

Reduction of Maxwell's Equations I

- Key assumption is that of current balance.
- Also note that electron pulse durations are bigger than characteristic light transit time.
- Pulse duration = τ
- Beam width = L

neglect

Dimensional Analysis Argument:

$$\frac{\left|\frac{\partial E}{\partial t}\right|}{\left|c^{2}\nabla\times B\right|} \approx \frac{\frac{\eta j}{\tau}}{\frac{c^{2}\eta j\tau}{L^{2}}} \approx \frac{L^{2}}{c^{2}\tau^{2}}$$

$$\frac{\partial \mathbf{E}}{\partial t} = -\frac{\mathbf{j}}{\varepsilon_0} + c^2 \nabla \times \mathbf{B}$$
$$\mathbf{j_f} + \mathbf{j_c} = \frac{1}{\mu_0} \nabla \times \mathbf{B}$$

So it is valid if L<< $c\tau$, e.g. Even if 5 micron beam radius, and 50fs pulse duration Ratio is still 1/9 Dr.A.P.L.Robinson, CLF, Winter School 2011

Reduction of Maxwell's Equations II

- Current Balance
 - Formally we have:
 - Actually to a good approximation:
- Electrostatic Argument

$$\frac{\partial E}{\partial t} = -\frac{j}{\varepsilon_0} \qquad \frac{\partial E}{\partial t} \approx 10^{12} \,\text{Vm}^{-1} \,\text{fs}^{-1}$$

- Magnetostatic Argument:
 - See A.R.Bell et al. PPCF **48**, R37 (2006)
 - If cancellation is not local then this would permit growth of B-fields with energy in excess of beam energy.
 - So cancellation must be local as well.

$$\mathbf{j_f} + \mathbf{j_c} = \frac{1}{\mu_0} \nabla \times \mathbf{B}$$

 $|\mathbf{j}_f + \mathbf{j}_c \approx 0|$

Dr.A.P.L.Robinson, CLF, Winter School 2011

Reduction of Maxwell's Equations III

 We then determine the electric field through an Ohm's Law:

$$\mathbf{E} = \eta \mathbf{j}_c$$

$$\mathbf{E} = -\eta \mathbf{j_f} + \eta c^2 \nabla \times \mathbf{B}$$

Reduction of Maxwell's Equations II

 Finally we use this Ohm's Law in Maxwell's Induction Equation to evolve the magnetic field.

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\eta \mathbf{j_f}) + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B}$$

Hybrid Code Architecture

Interpolate to grid to get current density

Determine E and Evolve B

Interpolate Fields to Fast Electrons

Move Fast electrons

Inject Fast Electrons

Electron Ion exchange?
Radiation?
Etc.

Solve Hydro?

Update Resistivity

Push Fast Electrons, i.e. Update momentum

Apply Angular Scattering and Drag

Heat Background

Vlasov Solution via PIC

Solve Fluid Background

Dr.A.P.L.Robinson, CLF, Winter School 2011

Reduce Maxwell's Equations

Hybrid Code Resource Requirements

- Hybrid code can easily run in 2D or 3D on a modern desktop
- 10M particles as the fasts (~ 1GB) + Similar for gridded quantities will suffice for a 3D calculation.
- Comparable calculation with collisional PIC would require a cluster computing resource + a longer run time.
- Key to why we use hybrid codes:
- Sacrifice some degree of accuracy to produce a "reduced model" that will run quickly and allow one to carry out useful calculations.

Do we retain accuracy?

- Bell and Kingham PRL 2003
- Showed results from full finite-difference Vlasov-Fokker-Planck calculations with full Maxwell's equations.
- Results comparable to hybrid results.

Dr.A.P.L.Robinson, CLF, Winter School 2011

Essence of Hybrid Codes

- Relativistic Electrons: Nonthermal, anisotropic, highly variable collisionality
- Cold Background: Highly collisional, near-Maxwellian, v.dense
- Collisions + Resistivity important: Resistive field generation & energy deposition
- <u>Fast Tool for Large Scale</u>
 <u>Problem</u>

Need a kinetic component with collisions

Want to just treat as a fluid

Need to incorporate resistivity and collisional energy deposition

Must run quickly and be able to solve full problem

Resistivity

Resistivity in Plasmas

 The most commonly referenced form of plasma resistivity is the Spitzer resistivity:

$$\eta \cong 10^{-4} \frac{Z \ln \Lambda}{T_{e,eV}^{3/2}}$$

- Derive this by linearizing the Vlasov-Fokker-Planck equation.
- Primarily depends on T and Z
- Valid in the weakly-coupled limit

Resistivity in Solids and Dense Plasmas

- In laser-solid problems we will have dense, relatively low temperature plasmas
- Will not be weakly coupled and may be degenerate
- Spitzer resistivity would imply an collision time shorter than the electron transit time between ions.

Interatomic spacing
$$r_s = \left(\frac{3}{4\pi n_s}\right)^{1/3}$$
 $r_s = 1.6 \times 10^{-10} \,\mathrm{m}$

$$r_s = \left(\frac{3}{4\pi n_i}\right)^{1/3}$$

Solid Al

Transit time of a 10eV electron is

$$\tau_{\min} = \frac{r_s}{\sqrt{\frac{2eT_{e,eV}}{m_e}}} = 0.084 \text{fs}$$

Spitzer collision period is

$$\tau_{ei} = 0.028 \frac{4}{Z} \left(\frac{T_c}{keV}\right)^{3/2} \left(\frac{10}{\ln \Lambda}\right) \left(\frac{n_c}{10^{22} cm^{-3}}\right)^{-1} \text{ps} = 0.007 \text{fs}$$

Resistivity in Solids and Dense Plasmas II

 The implication is therefore that the "resistivity curve" must look something like:

What is the resistivity curve?

- Dense Plasma theorists will use Quantum Molecular Dynamics – Density Functional Theory (QMD-DFT) calculations to determine curve up to a few eV.
- QMD-DFT treats ions classically but the electrons are solved in a fully quantum mechanical way using DFT.
- Moderate to high temperatures are covered by models such as the Lee-More-Desjarlais model
- Need to fold in degeneracy, ionization and scattering rate to get accurate result.

Essence of Hybrid Codes

- Relativistic Electrons: Nonthermal, anisotropic, highly variable collisionality
- Cold Background: Highly collisional, near-Maxwellian, v.dense
- Collisions + Resistivity important: Resistive field generation & energy deposition
- <u>Fast Tool for Large Scale</u>
 <u>Problem</u>

Need a kinetic component with collisions

Want to just treat as a fluid

Need to incorporate resistivity and collisional energy deposition

Must run quickly and be able to solve full problem

Applications of Hybrid Codes

Fast Ignition

- Density is so high in compressed DT fuel that application of conventional PIC codes to full problem is essentially impossible.
- Use of hybrid methods is essential.
- Hybrid important for addressing basic questions such as : how much ignitor pulse energy is required?

Excerpts from J.Honrubia, PPCF, **51**, 014008 (2009)

Solid Targets

- Standard tool in laser-solid target simulation.
- Many experiments carried out in this regime.
- Allows rapid analysis of experimental results to provide interpretation.

Excerpt from J.S.Green et al., Nature Physics, 2007

Studying New Ideas

- Hybrid codes are useful for studying new concepts as well.
- Particularly where we directly exploit the physics contained in hybrid codes, e.g. <u>Look at exploiting resistivity gradients.</u>

Excerpts from Robinson and Sherlock, PoP 2007

Summary I

Sacrifice some degree of accuracy to produce a "reduced model" that will run quickly and allow one to carry out useful calculations.

- Physics based motivation for using hybrid codes.
- Approximations, consituent equations, and structure of a hybrid code.
- Problems that hybrid codes have been used to address.

Summary II

- Relativistic Electrons: Nonthermal, anisotropic, highly variable collisionality
- Cold Background: Highly collisional, near-Maxwellian, v.dense
- Collisions + Resistivity

 important: Resistive field
 generation & energy
 deposition
- <u>Fast Tool for Large Scale</u>
 <u>Problem</u>

Need a kinetic component with collisions

Want to just treat as a fluid

Need to incorporate resistivity and collisional energy deposition

Must run quickly and be able to solve full problem