1

Atomic and cluster physics for warm dense matter

Hikaru Kitamura

Department of Physics, Kyoto University

<u>OUTLINE</u>

- 1. Introduction to warm dense matter (WDM)
- 2. Quantum chemistry of clusters
- 3. Equation of state for mercury
- 4. Ab initio molecular dynamics
- 5. Photoexcitation kinetics of solids

1. Introduction to warm dense matter (WDM)

Phase diagram of hydrogen (theory)

WDM region $n = 10^{20-24} \text{ cm}^{-3}$ $T = 10^{3-6} \text{ K}$

metal-nonmetal transition
molecular dissociation
molecular liquid-solid transition

H.K. & S. Ichimaru, J. Phys. Soc. Jpn **67**, 950 (1998) **Expanded fluid metals**

F. Hensel & W.W. Warren, Jr., *Fluid Metals* (Princeton, 1999)

Gas-liquid coexistence curves (experimental)

4

Critical points of fluid metals

Elements	$T_{\rm c}({\rm K})$	$P_{\rm c}({\rm bar})$	$ ho_{ m c}(m gcm^{-3})$	
Hg	1751	1673	5.80	
Cs	1924	92.5	0.38	static experiments
Rb	2017	124.5	0.29	
Κ	2178	148	0.18	
Na	2483	248	0.30	
Li	3225	690	0.1	dynamic experiments
Al	8000	4470	0.64	or
Be	8100	11700	0.55	extrapolation
W, Sn, Au,	?			large uncertainties

 \star Mercury has the lowest $T_c \rightarrow$ Prototypical element for WDM studies

- F. Hensel and W.W. Warren: *Fluid Metals* (Princeton, 1999)
- V. Fortov, I. Iakubov & A. Khrapak: Physics of Strongly Coupled Plasma (Oxford, 2006)

Kohno & Yao, J. Phys.: Condens. Matter **13**, 10293 (2001) M. Yao, Z. Phys. Chem. **185**, S73 (1994)

- <u>Phase transitions</u> among solid, liquid, gas, metallic and nonmetallic states occur in WDM region.

 \rightarrow Importance of <u>interatomic interactions</u>

- Plasma, atomic, and condensed-matter concepts should be combined to predict WDM properties.

2. Quantum chemistry of clusters

Molecular orbitals (MOs) of hydrogen chains

ONE-BAND SYSTEM

R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Systems (VCH Publ., 1988), Sec. 2.

Metal-nonmetal transition in mercury clusters

Hg_N cluster becomes a metal at $N = 400 \pm 30$ (photoemission spectroscopy)

B. von Issendorff & O. Cheshnovsky, Annu. Rev. Phys. Chem. 56, 549 (2005)

M-NM transition enhances binding energies

Haberland, Kornmeier, Langosch, Oschwald & Tanner, J. Chem. Soc. Faraday Trans. **86**, 2473 (1990)

Typical molecular-orbital (MO) method

See e.g., Szabo & Ostlund, Modern Quantum Chemistry (Macmillan, 1982)

<u>Step 1</u>: LCAO-MO (linear combination of atomic orbitals)

i = 1s, 2s, 2p, etc.

Useful tables of ζ_i :

E. Clementi and C. Roetti, "Roothaan-Hartree-Fock Atomic Wavefunctions" At. Data Nucl. Data Tables 14, 177 (1974)

<u>Note</u>: In a solid, k = (band index + wave vector **k** within the Brillouin zone)

<u>Step 2</u>: Many-electron wavefunction

Unrestricted Hartree-Fock (UHF) approximation

$$\Psi(\mathbf{r}_{1}\sigma_{1},\cdots,\mathbf{r}_{N_{e}}\sigma_{N_{e}}) = \frac{1}{\sqrt{N_{e}!}} \sum_{P} (-1)^{P} P \bigg[\psi_{k_{1}}^{\alpha}(\mathbf{r}_{1})\alpha(\sigma_{1})\cdots\psi_{k_{N_{e}}^{\alpha}}^{\alpha}(\mathbf{r}_{N_{e}^{\alpha}})\alpha(\sigma_{N_{e}^{\alpha}}) - \psi_{k_{N_{e}}^{\alpha}+1}^{\beta}(\mathbf{r}_{N_{e}^{\alpha}+1})\beta(\sigma_{N_{e}^{\alpha}+1})\cdots\psi_{k_{N_{e}}}^{\beta}(\mathbf{r}_{N_{e}})\beta(\sigma_{N_{e}})\bigg]$$

Single Slater-determinant approximation applicable to open-shell systems

Example: Li₂ molecule

$$N = 2, N_e = 6$$

<u>Step 3</u>: Minimization of the total energy

$$H = \sum_{i=1}^{N_{\rm e}} \left[-\frac{\hbar^2}{2m_{\rm e}} \nabla_i^2 + \sum_{\mu=1}^{N} \frac{-Z_{\mu} e^2}{\left|\mathbf{r}_i - \mathbf{R}_{\mu}\right|} \right] + \frac{1}{2} \sum_{\substack{i, j=1 \ (i \neq j)}}^{N_{\rm e}} \frac{e^2}{\left|\mathbf{r}_i - \mathbf{r}_j\right|} + \frac{1}{2} \sum_{\substack{\mu, \nu=1 \ (\mu \neq \nu)}}^{N} \frac{Z_{\mu} Z_{\nu} e^2}{\left|\mathbf{R}_{\mu} - \mathbf{R}_{\nu}\right|}$$

The total energy $E = \langle \Psi | H | \Psi \rangle$ is minimized under the subsidiary condition, $\int d\mathbf{r} \psi_{k_i}^{\sigma^*}(\mathbf{r}) \psi_{k_i}^{\sigma}(\mathbf{r}) = 1$

$$\implies \delta \left\{ E - \sum_{i=1}^{N_{e}^{\alpha}} \varepsilon_{i}^{\alpha} \int d\mathbf{r} \psi_{k_{i}}^{\alpha^{*}}(\mathbf{r}) \psi_{k_{i}}^{\alpha}(\mathbf{r}) - \sum_{i=1}^{N_{e}^{\beta}} \varepsilon_{i}^{\beta} \int d\mathbf{r} \psi_{k_{i}}^{\beta^{*}}(\mathbf{r}) \psi_{k_{i}}^{\beta}(\mathbf{r}) \right\} = 0$$

$$\implies \sum_{\nu=1}^{N} \sum_{j=1}^{N_{\text{STO}}} \left(F_{i\mu,j\nu}^{\sigma} - \varepsilon_{k}^{\sigma} S_{i\mu,j\nu} \right) c_{j\nu,k}^{\sigma} = 0 \qquad \sigma = \alpha, \beta$$

<u>Step 4</u>: Self-consistent solutions to MOs

$$\sum_{\nu=1}^{N} \sum_{j=1}^{N_{\text{STO}}} \left(F_{i\mu, j\nu}^{\sigma} - \varepsilon_{k}^{\sigma} S_{i\mu, j\nu} \right) c_{j\nu, k}^{\sigma} = 0 \quad \text{for each } k, \sigma$$

Pople-Nesbet equation J.A. Pople, Nobel Prize in Chemistry, 1998

$$S_{i\mu,j\nu} \equiv \int d\mathbf{r} \phi_i^* (\mathbf{r} - \mathbf{R}_{\mu}) \phi_j (\mathbf{r} - \mathbf{R}_{\nu}) \quad \text{overlap integral}$$

$$F_{i\mu,j\nu}^{\sigma} \equiv \int d\mathbf{r} \phi_i^* (\mathbf{r} - \mathbf{R}_{\mu}) H_{\text{core}}(\mathbf{r}) \phi_j (\mathbf{r} - \mathbf{R}_{\nu}) \quad \longleftarrow \quad H_{\text{core}}(\mathbf{r}) \equiv -\frac{\hbar^2}{2m_{\text{e}}} \nabla^2 + \sum_{\mu=1}^{N} \frac{-Z_{\mu}e^2}{|\mathbf{r} - \mathbf{R}_{\mu}|}$$

$$+ \sum_{\mu'=1}^{N} \sum_{i'=1}^{N_{\text{STO}}} \sum_{\nu'=1}^{N} \sum_{j'=1}^{N_{\text{STO}}} \left[\left(P_{i'\mu',j'\nu'}^{\alpha} + P_{i'\mu',j'\nu'}^{\beta} \right) (i\mu,j\nu | i'\mu',j'\nu') - P_{i'\mu',j'\nu'}^{\sigma} (i\mu,j'\nu' | i'\mu',j\nu) \right] \quad \text{Fock matrix}$$

 $P_{i\mu,j\nu}^{\sigma} \equiv \sum_{k}^{occupied} c_{i\mu,k}^{\sigma^*} c_{j\nu,k}^{\sigma} \text{ bond-order matrix}$

$$(i\mu, j\nu | i'\mu', j'\nu') \equiv \int d\mathbf{r}_1 \int d\mathbf{r}_2 \phi_i^* (\mathbf{r}_1 - \mathbf{R}_\mu) \phi_j (\mathbf{r}_1 - \mathbf{R}_\nu) \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \phi_{i'}^* (\mathbf{r}_2 - \mathbf{R}_{\mu'}) \phi_{j'}^* (\mathbf{r}_2 - \mathbf{R}_{\nu'})$$

multi-center electron repulsion integrals

Example: Density of states (DOS) for a Li₂₄ cluster

- Broadening of discrete MO levels produces <u>continuous DOS</u> which mimics the energy-band structure of the bulk system.
- Computation of DOS at higher energies requires more atomic orbitals (3s,3p,3d, ...).

Alternative picture: Valence-bond method

Application to clusters: diatomics-in-molecules (DIM) method

3. Equation of state for mercury

Temporary 'clustering' in a fluid

$V_{\rm mb}(z,r_{\rm nn})/N$ for ${\rm Hg}_N$ clusters and solids

Helmholtz free energy

 $F \leq F_{\rm HS} + \langle H - H_{\rm HS} \rangle_{\rm HS}$ Gibbs-Bogoliubov inequality

$$\frac{F(n,T;\sigma)}{N} = \frac{F_{\rm HS}(\sigma)}{N} + \frac{n}{2} \int_{\sigma}^{\infty} dr 4\pi r^2 V_{\rm dimer}(r) g_{\rm HS}(r) + f_6(\sigma) + \sum_{z=1}^{12} p_{\rm HS}(z) \left[\int_{\sigma}^{r_{shell}} dr_{\rm nn} H_{\rm HS}(r_{\rm nn}) \frac{V_{\rm mb}(z,r_{\rm nn})}{N} \right]$$

distribution functions of z and $r_{\rm nn}$

$$\frac{\partial F(n,T;\sigma)}{\partial \sigma} = 0 \qquad \sigma \text{ optimized}$$

$$\implies P = n^2 \left(\frac{\partial (F/N)}{\partial n} \right)_T$$

equation of state

H. K., J. Chem. Phys. 126, 134509 (2007)

 $\bigcup_{\sigma} \bigcup_{\sigma}$ hard-sphere (HS) reference system

Numerical result: Coexistence curve of Hg

H. K., J. Chem. Phys. 126, 134509 (2007)

Comparison with the plasma model

Chemical equilibrium of atoms, ions, molecules, electrons

R. Redmer, Phys. Rep. 282, 35 (1997)

Electron distributions in expanded metals

plasma picture

condensed-matter picture

homogeneous

inhomogeneous (→supported by QMD simulations)

What happens at higher temperatures ?

4. Ab initio molecular dynamics

Quantum molecular dynamics (QMD) simulation (*Ab initio*)

M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias & J.D. Joannopoulos: Rev. Mod. Phys. **64** (1992) 1045

Total potential energy in DFT

$$V(\mathbf{R}_{1}, \dots, \mathbf{R}_{N}) = \sum_{\mathbf{k},i} \int d\mathbf{r} \psi_{\mathbf{k},i}^{*}(\mathbf{r}) \left[-\frac{\hbar^{2}}{2m_{e}} \nabla^{2} + \sum_{\mu=1}^{N} V_{ei}(\mathbf{r} - \mathbf{R}_{\mu}) \right] \psi_{\mathbf{k},i}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')e^{2}}{|\mathbf{r} - \mathbf{r}'|} + E_{\mathrm{xc}}[n(\mathbf{r})] + \frac{1}{2} \sum_{\mu,\nu=1}^{N} \frac{Z_{\mu}Z_{\nu}e^{2}}{|\mathbf{R}_{\mu} - \mathbf{R}_{\nu}|}$$
electron density
electron density
$$n(\mathbf{r}) = \sum_{\mathbf{k}}^{\mathrm{BZ}} \sum_{i} f(\varepsilon_{\mathbf{k},i}) \left| \psi_{\mathbf{k},i}(\mathbf{r}) \right|^{2}$$
Fermi distribution
band index

Kohn-Sham equation

$$\left[-\frac{\hbar^2}{2m_{\rm e}}\nabla^2 + \sum_{\mu=1}^N V_{\rm ei}(\mathbf{r} - \mathbf{R}_{\mu}) + \int d\mathbf{r}' \frac{n(\mathbf{r}')e^2}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta E_{\rm xc}[n(\mathbf{r})]}{\delta n(\mathbf{r})}\right] \psi_{\mathbf{k},i}(\mathbf{r}) = \varepsilon_{\mathbf{k},i} \psi_{\mathbf{k},i}(\mathbf{r})$$

W. Kohn, Nobel Prize in Chemistry, 1998

Charge density map in fluid Rb

64 atoms, 5-20 ps

Kietzmann, Redmer, Hensel, Desjarlais & Mattson: J. Phys.:Condens. Matter 18 (2006) 5597

- Inhomogeneous atomic distributions: transient dimers & trimers

5. Photoexcitation kinetics of solids

Heating of solid targets by ultrashort-pulse lasers

How can we simulate highly photoexcited solids?

- modification of electronic structures in excited states
- electron-hole correlation
- dynamics of collisional/radiative transitions

Electron-hole liquid (EHL) in a photoexcited semiconductor

Prototypical system of highly excited condensed matter

T. Suzuki & R. Shimano, Phys. Rev. Lett. 103, 057401 (2009)

Various types of photoexcited solids

Hamiltonian (electron, phonon, photon)

P. Fulde, Electron Correlations in Molecules and Solids (Springer, 1995), Chap. 2

Hartree-Fock one-electron energy

$$H = \sum_{k\sigma} \varepsilon_{k\sigma}^{\sigma} c_{k\sigma}^{\dagger} c_{k\sigma} - \sum_{k_{1}k_{2}\sigma} \sum_{k_{3}\sigma'} \left(V_{k_{1}k_{2}k_{3}k_{3}}^{\sigma\sigma'} - \delta_{\sigma\sigma'} V_{k_{1}k_{3}k_{3}k_{2}}^{\sigma\sigma} \right) \delta_{k_{3}\sigma'}^{\text{occ}} c_{k_{1}\sigma}^{\dagger} c_{k_{2}\sigma}$$

$$+ \frac{1}{2} \sum_{\substack{k_{1}k_{2}k_{3}k_{4}\\\sigma\sigma'}} V_{k_{1}k_{2}k_{3}k_{4}}^{\sigma\sigma'} c_{k_{1}\sigma}^{\dagger} c_{k_{3}\sigma'}^{\dagger} c_{k_{4}\sigma'} c_{k_{2}\sigma} + \frac{e}{m_{e}c} \mathbf{A}(t) \Box \sum_{\substack{k_{1}k_{2}\sigma}} \mathbf{p}_{k_{1}k_{2}}^{\sigma} c_{k_{1}\sigma}^{\dagger} c_{k_{2}\sigma} + \sum_{\substack{k_{1}k_{2}\sigma}} U_{k_{1}k_{2}}^{\sigma} c_{k_{1}\sigma}^{\dagger} c_{k_{2}\sigma} + \sum_{\substack{k_{1}k_{2}\sigma}} U_{k_{1}k_{2}\sigma}^{\sigma} c_{k_{1}\sigma}^{\dagger} c_{k_{2}\sigma}$$

$$e-e \text{ collision} \qquad \text{photoabsorption \& emission} \qquad e-phonon \text{ interaction}$$

+ $A^{2}(t)$ -term (scattering of photons)

 $\delta_{k_1\sigma_1}^{\text{occ}} = \begin{cases} 1 & \text{if state } (k_1, \sigma_1) \text{ is occupied in the ground state} \\ 0 & \text{otherwise} \end{cases}$ $V_{k_{1}k_{2}k_{3}k_{4}}^{\sigma_{1}\sigma_{2}} \equiv \int d\mathbf{r}_{1} \int d\mathbf{r}_{2} \psi_{k_{1}}^{\sigma_{1}*}(\mathbf{r}_{1}) \psi_{k_{2}}^{\sigma_{1}}(\mathbf{r}_{1}) \frac{e^{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \psi_{k_{3}}^{\sigma_{2}*}(\mathbf{r}_{2}) \psi_{k_{4}}^{\sigma_{2}}(\mathbf{r}_{2}) \quad \text{electron repulsion integral}$ $\mathbf{p}_{k_{1}k_{2}}^{\sigma} \equiv \int d\mathbf{r} \psi_{k_{1}}^{\sigma*}(\mathbf{r}) \frac{\hbar}{i} \nabla \psi_{k_{2}}^{\sigma}(\mathbf{r}) \quad \text{momentum operator}$ $\mathbf{A}(t) = \frac{1}{2} \mathbf{A}_{0} \exp(-i\omega_{v}t) + \operatorname{cc} \quad \text{vector potential of the laser field}$ $3 \cdot \frac{1}{2} \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \frac{1}{2} \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \quad \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \frac{1}{2} \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \quad \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \frac{1}{2} \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \quad \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \frac{1}{2} \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \quad \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \quad \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \quad \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \quad \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) + \operatorname{cc} \left(\frac{1}{2} \operatorname{cc} \right) = \operatorname{cc} \left(\frac{1}{2}$

Density matrix equation for electron transitions

 $c_{k\sigma}^{\dagger}, c_{k\sigma}$: creation & annihilation operators of an electron in state (k, σ)

$$\left\{c_{k\sigma}^{\dagger}, c_{k'\sigma'}\right\} = \delta_{kk'}\delta_{\sigma\sigma'}, \ \left\{c_{k\sigma}^{\dagger}, c_{k'\sigma'}^{\dagger}\right\} = \left\{c_{k\sigma}, c_{k'\sigma'}\right\} = 0 \quad \text{anticommutation relations}$$

 $\langle \rho_{kk'\sigma} \rangle \equiv \langle c_{k\sigma}^{\dagger} c_{k'\sigma} \rangle$: one-particle density matrix

$$i\hbar\frac{\partial}{\partial t}\left\langle\rho_{kk'\sigma}(t)\right\rangle = \left\langle\left[c_{k\sigma}^{\dagger}c_{k'\sigma},H(t)\right]\right\rangle$$

quantum-mechanical equation of motion

 $\langle \cdots \rangle$: expectation value

 $\langle \rho_{kk\sigma}(t) \rangle = f_{k\sigma}(t)$ diagonal element = population of *k*th MO $\langle \rho_{kk'\sigma}(t) \rangle (k \neq k')$ off-diagonal element = polarization

 \rightarrow Successfully applied to photoexcited semiconductors

"Semiconductor Bloch equation"

F. Rossi & T. Kuhn, Rev. Mod. Phys. 74 895 (2002)

 \rightarrow In principle, applicable to photoexcited WDM

Off-diagonal elements

$$i\hbar \frac{\partial}{\partial t} \langle \rho_{kk'\sigma}(t) \rangle = \left(\varepsilon_{k'}^{\sigma} - \varepsilon_{k}^{\sigma} \right) \langle \rho_{kk'\sigma}(t) \rangle$$
$$+ \sum_{k_{3}} \left[\left(\tilde{\varepsilon}_{k'k_{3}\sigma}(t) + \frac{e}{m_{e}c} \mathbf{A}(t) \cdot \mathbf{p}_{k'k_{3}}^{\sigma} + U_{k'k_{3}}^{\sigma} \right) \langle \rho_{kk_{3}\sigma}(t) \rangle - \left(\tilde{\varepsilon}_{k_{3}k\sigma}(t) + \frac{e}{m_{e}c} \mathbf{A}(t) \cdot \mathbf{p}_{k_{3}k}^{\sigma} + U_{k_{3}k}^{\sigma} \right) \langle \rho_{k_{3}k'\sigma}(t) \rangle \right]$$
$$+ i\hbar \frac{\partial}{\partial t} \langle \rho_{kk'\sigma}(t) \rangle \bigg]_{\text{coll}}$$

$$\tilde{\varepsilon}_{kk'\sigma}(t) \equiv \sum_{k_1k_2\sigma_1} \left(V_{kk'k_1k_2}^{\sigma\sigma_1} - \delta_{\sigma\sigma_1} V_{kk_2k_1k'}^{\sigma\sigma} \right) \left[\left\langle \rho_{k_1k_2\sigma_1}(t) \right\rangle - \delta_{k_1k_2} \delta_{k_1\sigma_1}^{\text{occ}} \right]$$

self-energy matrix (energy-level shift)

$$i\hbar \frac{\partial}{\partial t} \left\langle \rho_{kk'\sigma}(t) \right\rangle \bigg|_{\text{coll}} = \sum_{k_1 k_2 k_3 \sigma_1} \left(V_{k' k_3 k_1 k_2}^{\sigma \sigma_1} \delta K_{kk_3 k_1 k_2}^{\sigma \sigma_1}(t) - V_{k_3 k k_2 k_1}^{\sigma \sigma_1} \delta K_{k_3 k' k_2 k_1}^{\sigma \sigma_1}(t) \right) \begin{array}{c} \text{collist} \\ \text{(elect)} \end{array}$$

ollision term electron correlation) (cf. lecture by T. Bell)

$$K_{kk_3k_1k_2}^{\sigma\sigma_1} \equiv \left\langle c_{k\sigma}^{\dagger} c_{k_1\sigma_1}^{\dagger} c_{k_2\sigma_1} c_{k_3\sigma} \right\rangle$$

two-particle density matrix

$$\equiv \left\langle \rho_{kk_{3}\sigma} \right\rangle \left\langle \rho_{k_{1}k_{2}\sigma_{1}} \right\rangle - \delta_{\sigma\sigma_{1}} \left\langle \rho_{k_{1}k_{3}\sigma} \right\rangle \left\langle \rho_{kk_{2}\sigma} \right\rangle + \frac{\delta K_{kk_{3}k_{1}k_{2}}^{\sigma\sigma_{1}}}{\text{correlation part}}$$

Approximation 1: Two-state approximation $(k_3 = k, k')$

$$i\hbar \frac{\partial}{\partial t} \langle \rho_{kk'\sigma}(t) \rangle \cong \left[\left(\varepsilon_{k'}^{\sigma} + \tilde{\varepsilon}_{k'k'\sigma}(t) + \frac{e}{m_{e}c} \mathbf{A}(t) \cdot \mathbf{p}_{k'k'}^{\sigma} \right) - \left(\varepsilon_{k}^{\sigma} + \tilde{\varepsilon}_{kk\sigma}(t) + \frac{e}{m_{e}c} \mathbf{A}(t) \cdot \mathbf{p}_{kk}^{\sigma} \right) \right] \langle \rho_{kk'\sigma}(t) \rangle$$

renormalized intraband transition
energy level (Drude)
$$+ \left(\tilde{\varepsilon}_{k'k\sigma}(t) + \frac{e}{m_{e}c} \mathbf{A}(t) \cdot \mathbf{p}_{k'k}^{\sigma} + U_{k'k}^{\sigma} \right) \left[f_{k\sigma}(t) - f_{k'\sigma}(t) \right] \qquad k-k' \text{ transition}$$

induced field

$$+i\hbar \frac{\partial}{\partial t} \left\langle \rho_{kk'\sigma}(t) \right\rangle \bigg|_{\text{coll}}$$

→ Solved within the <u>Markov approximation</u>, assuming that $\langle \rho_{kk'\sigma}(t) \rangle$ varies more rapidly than $f_{k\sigma}(t)$.

Approximation 2: Born approximation to the collision term

$$i\hbar \frac{\partial \delta K_{kk_3k_1k_2}^{\sigma\sigma_1}}{\partial t} = \left(\varepsilon_{k_3}^{\sigma} + \varepsilon_{k_2}^{\sigma_1} - \varepsilon_{k_1}^{\sigma} - \varepsilon_{k_2}^{\sigma}\right) \delta K_{kk_3k_1k_2}^{\sigma\sigma_1} + S_{kk_3k_1k_2}^{\sigma\sigma_1}$$

$$S_{kk_3k_1k_2}^{\sigma\sigma_1} \cong \sum_{k_4k_5k_6k_7} V_{k_4k_5k_6k_7}^{\sigma\sigma_4} \left[\left\langle \rho_{kk_5\sigma} \right\rangle \left\langle \rho_{k_1k_7\sigma_1} \right\rangle \left(\left\langle \rho_{k_6k_2\sigma_1} \right\rangle - \delta_{k_6k_2} \right) \left(\left\langle \rho_{k_4k_3\sigma} \right\rangle - \delta_{k_4k_3} \right) - \left(\left\langle \rho_{kk_5\sigma} \right\rangle - \delta_{kk_5} \right) \left(\left\langle \rho_{k_1k_7\sigma_1} \right\rangle - \delta_{k_1k_7} \right) \left\langle \rho_{k_6k_2\sigma_1} \right\rangle \left\langle \rho_{k_4k_3\sigma} \right\rangle \right]$$

$$\cong V_{k_3k'k_2k_1}^{\sigma\sigma_3} \left[f_{k_1\sigma_1} (1 - f_{k_2\sigma_1})(1 - f_{k_3\sigma}) + (1 - f_{k_1\sigma_1})f_{k_2\sigma_1}f_{k_3\sigma} \right] \left\langle \rho_{kk'\sigma} \right\rangle$$

 \rightarrow varies slowly with *t* (Markov approximation)

dominant term

$$\begin{aligned} \begin{array}{l} \textbf{Diagonal elements} \end{aligned} \\ \textbf{ih} \frac{\partial f_{k\sigma}(t)}{\partial t} = \sum_{k'(\neq k)} \left[\left(\tilde{\varepsilon}_{kk'\sigma}(t) + \frac{e}{m_e c} \mathbf{A}(t) \cdot \mathbf{p}_{kk'}^{\sigma} + U_{kk'}^{\sigma} \right) \langle \rho_{kk'\sigma}(t) \rangle - \left(\tilde{\varepsilon}_{k'k\sigma}(t) + \frac{e}{m_e c} \mathbf{A}(t) \cdot \mathbf{p}_{k'k}^{\sigma} + U_{k'k}^{\sigma} \right) \langle \rho_{k'k\sigma}(t) \rangle \\ + i\hbar \frac{\partial f_{k\sigma}(t)}{\partial t} \right]_{coll} \longleftarrow e-e \text{ collision} \\ \frac{\partial f_{k\sigma}(t)}{\partial t} \right]_{coll} = -\frac{1}{\hbar} \sum_{k_1 k_2 k_3 \sigma_1} V_{kk_3 k_1 k_2}^{\sigma\sigma_1} \left(V_{k_3 k_2 k_1}^{\sigma\sigma_1} - \delta_{\sigma\sigma_1} V_{k_2 k_3 k_1}^{\sigma\sigma} \right) \\ \times \left[f_{k\sigma} f_{k_1 \sigma_1} \left(1 - f_{k_2 \sigma_1} \right) \left(1 - f_{k_3 \sigma} \right) - \left(1 - f_{k_1 \sigma_1} \right) f_{k_2 \sigma_1} f_{k_3 \sigma} \right] \\ \times \frac{\hbar \Gamma'}{\left(\tilde{\varepsilon}_{k_3 \sigma} + \tilde{\varepsilon}_{k_2 \sigma_1} - \tilde{\varepsilon}_{k_1 \sigma_1} - \tilde{\varepsilon}_{k_0 \sigma} \right)^2 + \left(\hbar \Gamma' \right)^2} + cc \end{aligned}$$

Problem: energy conservation, screening

Markov approximation to $\langle \rho_{kk'\sigma}(t) \rangle$ \longrightarrow rate equation

Collisional-radiative rate equation for solids

Rate coefficients include energy-level shifts.

H.K., J. Phys. B 43, 115601 (2010)

Example: K-edge excitation of lithium by EUV-FEL

photon energy = 60 eV, intensity = 10^{14} W/cm², fixed ions

Population kinetics

 $E_v = 60 \text{eV}, I_v = 10^{14} \text{W/cm}^2$

Time-resolved photoabsorption spectra

Density of states

Lowering of core levels relative to the valence levels → <u>blue shift</u> of the absorption edge

Valence electron collisional relaxation rate

ground state: Pauli blocking near Fermi energy photoexcited state \rightarrow no Pauli blocking \rightarrow enhanced collision rate collision time = 0.1 fs

Summary

(1) EOS combining quantum-chemical and fluid-variational approaches

- works well for Hg critical point
- should be modified at higher temperatures (excited-state populations) and low densities (formation of molecules)

(2) QMD simulations

- can directly simulate distributions of electrons and ions
- wide applicability: various elements, high temperatures, EOS, conductivity
- difficulty: determination of critical points
- (3) Photoexcitation kinetics of solids
 - unrestricted Hartree-Fock + density-matrix equation of motion
 - Markov approximation \rightarrow collisional- radiative rate equations
 - rate coefficients & energy-level shifts derived from the Hamiltonian
 - difficulty: treatment of collision terms (energy conservation, screening, correlation), continuum wave functions