Lawrence Livermore National Laboratory

Porous Materials for Laser Target Applications

September 30, 2010

Joe Satcher, Jr.

Contributors: Theodore F. Baumann, Brady J. Clapsaddle, Stuart A. Gammon, Alexander E. Gash, John F. Poco, Gregory W. Nyce, Robert A. Reibold, A.W. Van Buuren, S.O. Kucheyev, Y.M. Wang, T.M. Willey, K.J.J. Wu, C.C. Walton, L.A. Zepeda-Ruiz, G.H. Gilmer, M.M. Biener, J.R.I. Lee, S.C. Wilks, R.R. Miles

> Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Summary:

We are developing unique materials synthesis capabilities focused on producing porous materials with a broad range of compositions and properties for laser target applications

Outline:

Motivation

Aerogels

Experimental Platforms Fielded

Current Development Example

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

Motivation

High Energy Density Physics (HEDP) experiments require materials that meet a broad range of specifications

- Many designs require porous materials with challenging attributes:
 - Machined or cast high- and low-Z materials (inorganic and organic)
 - Range of densities, density gradients
 - Single component, composites, or doped materials
- To meet these challenges, we endeavor to develop reliable methods for preparation of materials with controlled:

Aerogels

Aerogels possess a number of structural features that are desirable for laser target designs

- Microstructure of aerogels consists of an interconnected 3D network of nanometer-sized particles:
 - Continuous porosities (0.40-0.99+)
 - High surface areas (400 to 1000 m²/g)
 - Low mass densities (1.8 to 0.001 g/cm³)
 - Ultrafine cell/pore sizes (≤ 0.1 micron)

Primary particles:

Aerogels

Aerogels are prepared using the sol-gel process

Sol-gel chemistry involves two basic steps:

Xerogel high density

Length scale (pore size) is a consequence of the process, not composition, however, chemistry defines structural details

Lawrence Livemmore National Laboratory

3rd European Target Fabrication Workshop

Aerogels

We have defined the synthesis protocols to synthesize a broad range of *monolithic* aerogel compositions

6

Example 1: In some designs, machineable inorganic aerogel materials are required

 Synthetic variables are manipulated to impact the mechanical properties of the aerogel:

Precision machined TiO₂ aerogels for hydrodynamic experiments 10 µm

dynamic two color radiography experiments

TiO₂ @ 1.8 g/cc

Machined divot Depth: 5 µm

Precision machined Ta₂O₅ aerogels for radiation transport experiments

Gash, A. E. et al. Chem. Mater. 15, 3268 (2003). Kucheyev et al. Phys. Rev. B 69, 245102 (2004). Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

Example 2: In other designs, we can prepare net-cast aerogels for the fabrication of targets

• Synthesis and processing conditions are controlled to produce materials with minimal shrinkage:

Wide range of densities
Cast in a variety of shapes (films, spheres, cylinders)

Net shape cast Ta₂O₅ aerogel (100 mg/cc) for Hohlraum development

 Ta_2O_5 aerogel (100 mg/cc) cast directly on Al disc for EOS targets (*surface adhesion*)

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

Example 3: We have also developed synthesis protocols for a series of multi-component sol-gel

materials

 We have synthesized aerogels containing high-Z dopants with aggregate density below 0.2 $n_c \sim < 5.0 \text{ mg/cc}$

Ti ($h_V = 4.7 \text{keV}$) Zn ($h_V = 8.9 \text{keV}$), Ge ($h_V = 10.0 \text{ keV}$))

20 at % Ge/SiO₂ 4 mg/cc

3 at % Ti/SiO₂ 3 mg/cc

heating waves

Omega irradiation geometry

Underdense multi-keV x-ray sources for large-area backlighters and weapons effects testing

5 mg/cc

2 propagating laser-

OMEGA x-ray image of Ti-doped aerogel

Fournier et al, Phys. Rev. Lett. 92, 165005 (2004)

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

Process Considerations: Double shell targets were originally machined

Carbon vs. silica aerogel design

3rd European Target Fabrication Workshop satcher1@llnl.gov, (925)-422-7794 - 9/30/10

Lawrence Livermore National Laboratory

Current approach: glass capsule is cast in a monolithic piece of 50 mg/cc SiO₂ aerogel

Proceess Considerations: Materials dynamics experiments measure the strength of samples at high pressure

Proess Considerations: Gradient density reservoirs are made using an aerogel "glue"

Using 0.01 g/cc interpenetrating network of silica aerogel enabled the fabrication of step function graded density reservoirs down to 0.05 g/cc

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

Foam shells inside a capsule

3rd European Target Fabrication Workshop

Lawrence Livermore National Laboratory

Our current approach: Chemistry-in-a-capsule

challenges	Effect/problem	solution
Picoliter volumes	Evaporation, accurate delivery	Ionic solvents, microfluidics
Mechanically robust hydrocarbon aerogel liner	Shrinkage can induce cracking Aerogel must survive hydrogen wetting	Develop new aerogels ROMP of DCPD (CH)
Controlled gel time	Catalyst deactivation by surface groups	Surface engineering
Uniform layer under shear	Viscoelastic properties at sol-gel transition	Tune aerogel chemistry

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

Surface engineering enables controlled doping of aerogels via Atomic Layer Deposition (ALD)

Ghosal S. et al. Chemistry of Materials 21, 2009, 1989

ALD will enable area-selective doping of surface modified of aerogels

Summary

We are developing materials synthesis capabilities for a broad range of porous materials with tailored properties

Flexibility in all synthetic approaches

Gash, A. E. et al. *Chem. Mater.* **15**, 3268 (2003); *J. Non-Cryst. Solids* **350**, 145 (2004); Reibold, R. A. et al. *J. Non-Cryst. Solids* **319**, 241 (2003); *J. Non-Cryst. Solids* **341**, 35 (2004); Baumann et al. *Chem Mater.* 17, 395 (2005); *Adv. Mater.* (2005), Nyce et al. Chem Mat. V19 (3), 344-346, 2007

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

satcher1@llnl.gov, (925)-422-7794 - 9/30/10

17

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

Ultrathin nanoporous foam liner

We need to understand and improve the rheological properties near the gel point

Modifying cross-link density to impact viscosity change

Lawrence Livermore National Laboratory

3rd European Target Fabrication Workshop

satcher1@llnl.gov, (925)-422-7794 - 9/30/10

Porous Materials for Laser Target Applications

Progression to Produce Low Density Porous Metals

Plating Silver on a Gold Plated PS Bead Is a Step to Porous Gold Hollow Particles

Synthesis of hollow silver/gold alloy shells

Using this approach, we can readily control the relative proportions of Ag and Au by adjusting plating conditions

We have also observed that subsequent heat treatment to remove the polystyrene template produces an alloyed Au/Ag hollow shell

Lawrence Livermore	National	Laboratory
--------------------	-----------------	------------