

The Study of Shock Physics in single crystal Tantalum. A Target Fabrication Challenge.

N. Bazin

AWE, Aldermaston, Reading, Berkshire, UK RG74PR, nick.bazin@awe.co.uk

Overview

- General Introduction
- Introduction to the Laue Campaign
- Experimental Principle
- The Target
- The Components
- The Construction
- Conclusion

Introduction

 AWE Target Fabrication Group supports plasma physics experiments fielded on a number of laser systems around the world, which will soon include AWE's flagship Orion Laser.

Background

- Most laser targets need an element of:
 - Procurement,
 - R&D, manufacture,
 - Assembly and
 - Characterisation.
- What can seem like a straight forward target to the experimentalist can in fact prove quite a challenge to the fabricators.

Laue Experimental Aim

- To investigate dislocation densities in a shocked single crystal using the x-ray Laue diffraction technique.
- High rate dynamic loading in a metallic single crystal is expected to produce very large dislocation densities which should be revealed by a broadening of the spots in the Laue diffraction pattern.

The Principle

Experimental set up

- Target sits in a broad band x-ray camera.
- Camera has x-ray sensitive film on the inside to collect diffracted x-rays.

The Target

Construction – first thoughts

- Simple!
- Order a piece of single crystal foil and a pinhole.
- Glue them together.
- Coat it.
- Attach it to a washer and
- Shoot a laser at it.
- Unfortunately its not that simple.

To begin with, there are the parts.

- Ta single crystal foils (on MgO).
- Heavimet circular pin holes.
- Adhesive.
- Heavimet rectangular washers.
- Parylene ablator.
- Boron/carbon reflector.
- CH capsules.
 - Chemicals and lab apparatus.

Single crystal tantalum foils

 Physically vapour deposited utilising an effect known as eptiaxy.

Single crystal tantalum foils

- Challenge:
 - Only one known source in the world available for producing this type of Ta foil.
 - Only one source of single crystal MgO (must be sourced from China).
 - This creates supply/time issues.

Single crystal MgO Substrate

- Ideally need to cut MgO without da Laue Method How?
- Must remove the MgO from the tar
- Note
 - free standing Ta foils liable to defed
 - Ta foils need x-ray characterisation.

Pinholes

- Precision machined from Heavimet alloy.
- First challenge, finding a supplier who can supply, machine and characterise the parts.
- Centre must be 100 microns +/-10 microns. Angle needs to be 170 degrees.
- Need an adhesive well and over-flow reservoir to prevent glue wicking into central hole.

Adhesives

- Used to bond MgO backed tantalum foil to Heavimet pinhole.
- MgO removed using conc acid at elevated temperature.
- Compatibility trials are needed as no specific adhesive is manufactured for these conditions.
- Still have other usual adhesive challenges, curing wicking, sticking etc.

Characterisation

- Foils need to be assessed at each stage to check for damage to the foil (damage = increased defect density)
 - Laue diffraction
 - Flatness

Parylene Coating (and characterisation)

- Parylene coating gets everywhere!
- Need 20 microns (2 days) on one the tantalum foil side and nothing on the reverse.

Carbon overcoat

- Less difficult as a line of sight coating process using sputter coating.
- Also only 500nm required.
- But still needs characterisation.

Assembly

- Finally, the bonded, coated and characterised foil needs to be mounted into a washer in the correct orientation.
- Transported safely to the US.
- Then all the experimental timing issues begin.

Conclusion

 Even before you get to Donald Rumfelt's 'unknown unknowns' there are plenty of 'known knowns' and 'known unknowns' to keep us all very busy.

Crystal Defects

- Generation, growth and propagation of defects in crystalline materials play important role in determining macroscopic material properties such as strength
- Purpose of diffraction experiments is to gain insight into material microstructure (particularly defect density) under dynamic loading conditions
- Complements strength measurements made by comparing 2D continuum simulations with experiments looking at Rayleigh-Taylor growth in solid samples (described later).

Dislocation Dynamics and Strength

- Dislocations are the fundamental carriers of plastic deformation
- Their density and velocity (mobility) determine dɛ/dt and strength
- Dislocation mobility determined by interactions with other defects encountered as dislocation glides through crystal (other dislocations, point defects, grain boundaries, etc).
- Described by Orowan's equation:

Where $d\varepsilon/dt$ = plastic strain rate, ρ_m = dislocation density, b = Burger's vector, v_d = average dislocation velocity

Scientific objective – Make an in situ measurement of defect density and structure in dynamically compressed single crystal materials
 The structural response of a material to deformation is controlled by the formation

- and motion of defects
- In dynamic situation the predicted dislocation density is predicted to be orders of magnitude higher then observed in recovering
- By looking at the diffuse scattering around Laue diffraction spots using a broadband x-ray source can be used to determine density and structure

Real space image of defects

Broadening of Diffraction spots due to defects

Timing!

Target and Backlighter

BBXRD-mounted target (dimensions in µm)

Implosion Backlighters (not drawn to scale)

Type 1: 'Dynamic Hohlraum' Capsule, OD 980 μm

Outer GDP layer,
7.5 μm thick

Inner PVA layer,
1.6 μm thick

Type 2: Single-layer CH capsule, OD 980 μm

