Researchers using the CLF's Octopus facility have discovered a new way of observing designer nanomaterials - materials that are 400 times smaller than a human hair.
The breakthrough has the potential to revolutionise the way nanomaterials are applied to medicine and catalytic chemical reactions, for example in designing ever smaller drug transporters.
The project involved researchers from the University of Bristol working with a team from the CLF's Octopus microscopy facility. The research, recently published in the journal Science, explains how two-dimensional nanomaterials, called platelet micelles, can be identified using the super resolution imaging of the STFC’s microscope facility ‘Octopus’.
Platelet micelles consisting of three concentric rectangles, each incorporating fluorescent dyes of a different colour and with a central hole, can be easily seen in a fluorescence microscope. However, because the rectangles are about 200 nm thick, they appear blurred and overlapping.
“A conventional microscope cannot resolve multicolour objects on this scale but the structured illumination microscope within ‘Octopus’ is ideally suited to imaging objects between 100 and 300 nanometres in size. These discoveries are the first use of super-resolution techniques in this type of materials science research. The work opens the doors to being able to image a whole range of new materials that previously could not be observed effectively at high resolution” said Dr Stephen Webb, from Octopus.
The paper reports that these micelles have a highly controllable structure and are easily assembled into larger structures.
This, and the fact that they are easily functionalised, makes them a potential tool for a wider range of uses, including therapeutic applications and catalysis. For example, the circulation time of drug delivery vehicles in the body is dependent on their size and morphology. These features can becontrolled in these micelles and the platelets can also be functionalised to contain medically relevant molecules.
Super-resolution imaging down to 50 nm now available on the CLF's OCTOPUS imaging facility
(Credit: STFC)
Professor Ian Manners, who led the team from the University of Bristol, said “The characterisation using the super resolution imaging capability at the CLF was absolutely critical to the success of this work. Without the extra resolution that Octopus offered us, the internal structure of the micelles would not have been clear at all”.
The microscope used was funded by the Medical Research Council through a grant awarded to the Octopus groupleader, Professor Marisa Martin-Fernandez, to develop super-resolution imaging for biomedical research. Ian Manners’ research is funded by both EPSRC and the European Research Council.
Further information: Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends
Qiu H, Gao Y, Boott CE, Gould OEC, Harniman RL, Miles MJ, WebbSED, Winnik MA, Manners I,
SCIENCE 352 (6286):697-701 (2016). DOI: 10.1126/science.aad9521 (link opens in a new window).
See also the Perspective article on this work in the same issue of Science:
Self-assembly creates 2D materials
Ballauf M,
SCIENCE 352 (6286):656-657 (2016). DOI: 10.1126/science.aaf4930 (link opens in a new window)
Professor Ian Manners’ lab (link opens in a new window) at the University of Bristol is funded by ERC, the EU, and EPSRC.
Charlotte Boott, the PhD student from Bristol who carried out the imaging with Stephen Webb, is funded by EPSRC.
The microscope used was funded by the Medical Research Council through a grant awarded to the Octopus group leader at STFC, Professor Marisa Martin-Fernandez, to develop super-resolution imaging for biomedical research.
Full STFC Press Release (link opens in a new window)
More information on Octopus
CLF Contact: Stephen Webb