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1 Introduction

Experimental Area 1 at the Extreme Photonics Appli-
cations Centre (EPAC) will predominantly be used for
electron acceleration in underdense plasmas. A mixture
of permanent magnet and electromagnetic quadrupoles
will be used to collect and transport electrons from the
source to the application area or to diagnostics. To
aid the design of the magnetic beamline, Particle-In-Cell
(PIC) simulations have been performed to generate real-
istic electron beam outputs from the EPAC laser wake-
field accelerator.

2 Bayesian Optimisation of PIC Simulations

Simulations were performed using FBPIC [1]. FBPIC
uses a quasi-cylindrical coordinate system which allows
faster computational times than full 3D algorithms,
without loss of accuracy in a close to cylindrically
symmetric system. This improved computational time
means simulations can take minutes/hours rather than
days, so many iterations can be performed to quantify
a parameter space. The vast parameter space dealt
with in laser-plasma interactions means detailed grid
scans still require a prohibitive amount of time to
perform. Machine learning techniques, such as Bayesian
optimisation [2], can be used to more quickly evaluate
a parameter space given a specified objective. The
method used here is similar to Ref. [3]. Figure 1 shows
the process used for Bayesian optimisation. First, an
objective function is defined. This is the value that
is maximised/minimised in this process. Next, several
simulations are run at random points within the chosen
parameter space to train the surrogate model, which
gives an estimate of the objective function over the
parameter space. Gaussian process regression [4] is
used here to generate this model. Once we have a
rudimentary model of the parameter space, we use an
acquisition function to find the next set of parameters
to trial. Expected improvement is used here, which
considers both the probability that a given point in the
parameter space will give a better evaluation of the
objective function than previous evaluations, and the
expected magnitude of the increase when computing the
next value to trial [2]. Once simulation at this point in
the parameter space has been performed, the surrogate
model can be updated and the acquisition function can
give a new set of parameters to trial. Through many

iterations, something close to the maximum of the
objective function can be found within the parameter
space. This can be found with far fewer iterations than
with a grid scan, as the guided optimisation approach
leads to fewer evaluations performed at far from optimal
parameters.

Figure 1: Flow chart for Bayesian optimisation.

Using this process, a simulated laser wakefield accel-
erator was optimised to produce high brightness, 1GeV
electron beams. The simulated laser replicated the
EPAC laser expected day 1 parameters: an energy of
20 J, a duration of 30 fs and a spot 1/e2 radius of 60µm.
A dual-stage, trapezoidal gas density profile was cho-
sen to limit injection to the small, mixed gas nitrogen
in helium injector region, before the helium accelerator
region, as in figure 2. The objective function quantified
the electron brightness by

B =
Q

ϵxϵyσtσe
(1)

where ϵ is the rms normalised emittance, σt is the bunch
duration and σe is the energy spread. The objective
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function weighted this against a penalty function which
rewards proximity to 1GeV.

Figure 2: Gas density profile simulated. Optimised laser
focal plane plotted as red line.

3 Results

Using the PIC simulation setup described above, the
parameter space consisting of the following parameters
was explored: laser energy, laser focal plane, accelera-
tor region length, accelerator region gas density, injector
region gas density and injector region nitrogen concen-
tration. Over 300 iterations (20 training, 280 with op-
timiser), the objective function is plotted in figure 3.
Large gains can be seen in the first 150 iterations, after
which only marginal improvements are seen. The opti-
mised parameter were:

1. Laser energy = 19.3 J.

2. Laser focal plane = 4.7mm (red line in figure 2).

3. Accelerator region length = 16.7mm.

4. Accelerator region gas density = 0.45× 1018cm−3.

5. Injector region gas density = 0.37× 1018cm−3.

6. Injector region nitrogen concentration = 5.9%.

The longitudinal phase space of the optimised electron
bunch is plotted in figure 4. The bunch has a median
energy of 1 GeV, with an rms energy spread of 0.6%
and a charge of 25 pC. The emittance in the laser po-
larisation direction is 4.2mm.mrad and 1.3mm.mrad in
the orthogonal direction. The divergence in the laser
polarisation direction is 1.6mrad and 0.9mrad in the or-
thogonal direction. The 6D brightness of the optimised
bunch is 3.2× 1014 A/m2/0.1% bandwidth. This bunch
has been fed into magnetic tracking simulations for de-
sign of the EPAC electron beam transport.

Figure 3: Objective function plotted against iteration
number for a PIC simulation optimisation run.

Figure 4: The longitudinal phase space of the optimised
electron bunch.

4 Conclusion and Outlook

Bayesian optimisation guided PIC simulations have been
performed to generate a high quality, 1GeV electron
bunch, which can be used to inform electron transport
beamline design. This could be further optimised by ex-
ploring the effect of other parameters, such as laser chirp.
Realism of the simulation can be increased once gas tar-
gets capable of generating a similar density profile to the
one simulated have been designed, modelled and charac-
terised. The final goal in this simulation campaign is to
have a catalogue of realistic simulated electron outputs
with different energies and optimised for different objec-
tives, which can be used to aid experimental design at
EPAC.
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[1] Rémi Lehe et al. A spectral, quasi-cylindrical and dispersion-
free Particle-In-Cell algorithm. Computer Physics Communi-
cations 203, (2016), pp. 66–82.

2



[2] Donald R Jones, Matthias Schonlau, and William J Welch.
Efficient Global Optimization of Expensive Black-Box Func-
tions. Journal of Global Optimization 13, (4 1998), pp. 455–
492.
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